Publications
Showing entries 161 - 180 out of 245
Hlavackova-Schindler K, Plant C. Heterogeneous Graphical Granger Causality by Minimum Message Length. Entropy. 2020 Dec 11;22(12):1400. doi: 10.3390/e22121400
Mautz D, Plant C, Böhm C. DeepECT: The Deep Embedded Cluster Tree. Data Science and Engineering. 2020 Dec 1;5:419-432. doi: 10.1007/s41019-020-00134-0
Kahn RJ. Man, Woman, Child: Ethical Aspects of Metadata at the Pitt Rivers Museum. Digital Culture & Society. 2020 Dec;6(2):63-86. doi: 10.14361/dcs-2020-0205
Fröhlich GEA, Dörner KF, Gansterer M. Secure and efficient routing on nodes, edges, and arcs of simple-graphs and of multi-graphs. Networks (New York): an international journal. 2020 Dec;76(4):431-450. Epub 2020 Sep 25. doi: 10.1002/net.21993
Liu Y, Rozgonyi T, Marquetand P, Weinacht T. Excited-state dynamics of CH2I2 and CH2IBr studied with UV-pump VUV-probe momentum-resolved photoion spectroscopy. Journal of Chemical Physics. 2020 Nov 14;153(18):184304. doi: 10.1063/5.0026177
Chen B, D'Onghia E, Alves J, Adamo A. Discovery of new stellar groups in the Orion complex. Towards a robust unsupervised approach. Astronomy & Astrophysics. 2020 Nov 10;643:A114. doi: 10.1051/0004-6361/201935955
Böhm C, Plant C. Massively Parallel Graph Drawing and Representation Learning. In Wu X, Jermaine C, Xiong L, Hu XT, Kotevska O, Lu S, Xu W, Aluru S, Zhai C, Al-Masri E, Chen Z, Saltz J, editors, 2020 IEEE International Conference on Big Data (Big Data). IEEE. 2020. p. 609-616 doi: 10.1109/BigData50022.2020.9377976
Westermayr J, Marquetand P. Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space. Journal of Chemical Physics. 2020 Oct 21;153(15):154112. doi: 10.1063/5.0021915
Papazek P, Schicker I, Plant C, Kann A, Wang Y. Feature selection, ensemble learning, and artificial neural Networks for Short-Range Wind Speed Forecasts. Meteorologische Zeitschrift. 2020 Oct 20;29(4):307-322. doi: 10.1127/metz/2020/1005
Sahann R, Plant C, Möller T. A Distance Metric for Sets of Events. In Webb G, Zhang Z, Tseng VS, Williams G, Vlachos M, Cao L, editors, 2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020). IEEE. 2020. p. 506-515 doi: https://doi.org/10.1109/DSAA49011.2020.00065
Knoll C, Çetin A, Möller T, Meyer M. Extending Recommendations for Creative Visualization-Opportunities Workshops. 2020. Paper presented at 2020 IEEE Workshop on Evaluation and Beyond - Methodological Approaches to Visualization (BELIV), Salt Lake City, Utah, United States. doi: 10.1109/BELIV51497.2020.00017
Markham A, Grosse-Wentrup M. Measurement Dependence Inducing Latent Causal Models. 2020. Paper presented at Conference on Uncertainty and Artificial Intelligence, Unknown. doi: https://doi.org/10.48550/arXiv.1910.08778
Westermayr J, Marquetand P. Machine learning and excited-state molecular dynamics. Machine Learning: Science and Technology. 2020 Sep 17;1(4):043001. doi: 10.1088/2632-2153/ab9c3e
Schelling B, Sluiter G, Plant C. RandomLink - Avoiding Linkage-Effects by employing Random Effects for Clustering. In Hartmann S, Küng J, Kotsis G, Khalil I, Tjoa AM, editors, Database and Expert Systems Applications. DEXA 2020: Proceedings, Part I. 1 ed. Vol. 12391. Cham: Springer International Publishing. 2020. p. 217-232. (Lecture Notes in Computer Science). doi: https://doi.org/10.1007/978-3-030-59003-1_15
Bomze IM, Schachinger W. Constructing Patterns of (Many) ESSs Under Support Size Control. Dynamic Games and Applications. 2020 Sep;10(3):618-640. Epub 2019 Aug 24. doi: 10.1007/s13235-019-00323-1
Hlavackova-Schindler K, Plant C. Graphical Granger Causality by Information-Theoretic Criteria. In De Giacomo G, Catala A, Dilkina B, Milano M, Barro S, Bugarin A, Lang J, editors, ECAI 2020: 24th European Conference on Artificial Intelligence, 29 August–8 September 2020, Santiago de Compostela, Spain – Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). IOS Press. 2020. p. 1459-1466. (Frontiers in Artificial Intelligence and Applications, Vol. 325).
Schelling B, Miklautz L, Plant C. Non-linear Cluster Enhancement: Forcing Clusters into a compact shape. In De Giacomo G, editor, ECAI 2020 : 24th European Conference on Artificial Intelligence : 29 August-8 September 2020, Santiago De Compostela, Spain, including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) : proceedings: Part 2. Vol. 325. Amsterdam: IOS Press. 2020. p. 1451-1458. (Frontiers in Artificial Intelligence and Applications).
Mautz D, Ye W, Plant C, Böhm C. Non-Redundant Subspace Clusterings with Nr-Kmeans and Nr-DipMeans. ACM Transactions on Knowledge Discovery from Data. 2020 Aug;14(5):1-24. 55. doi: 10.1145/3385652
Kaufman B, Rozgonyi T, Marquetand P, Weinacht T. Coherent Control of Internal Conversion in Strong-Field Molecular Ionization. Physical Review Letters. 2020 Jul 29;125(5):053202. doi: 10.1103/PhysRevLett.125.053202
Molnar C, König G, Herbinger J, Freiesleben T, Dandl S, Scholbeck CA et al.. Pitfalls to Avoid when Interpreting Machine Learning Models. 2020. Paper presented at XXAI: Extending Explainable AI Beyond Deep Models and Classifiers, Wien, Austria. Epub 2020 Jul 8. doi: https://doi.org/10.48550/arXiv.2007.04131
Showing entries 161 - 180 out of 245