Publications
Showing entries 121 - 140 out of 273
Ghosh A, Tschiatschek S, Devlin S, Singla A. Adaptive Scaffolding in Block-Based Programming via Synthesizing New Tasks as Pop Quizzes. In Rodrigo MM, Matsuda N, Cristea AI, Dimitrova V, editors, Artificial Intelligence in Education: 23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part I. Cham: Springer. 2022. p. 28-40. (Lecture Notes in Computer Science, Vol. 13355). doi: 10.1007/978-3-031-11644-5_3
Tschiatschek S, Han D. Option Transfer and SMDP Abstraction with Successor Features. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. 2022. p. 3036-3042 doi: 10.24963/ijcai.2022/421
Lindner D, Tschiatschek S, Hofmann K, Krause A. Interactively Learning Preference Constraints in Linear Bandits. In Proceedings of the 39th International Conference on Machine Learning: 17-23 July 2022, Baltimore, Maryland, USA. 2022. (Proceedings of Machine Learning Research, Vol. 162).
Kinast A, Braune R, Dörner KF, Rindlerle-Ma S, Weckenborg C. A hybrid metaheuristic solution approach for the cobot assignment and job shop scheduling problem. Journal of Industrial Information Integration. 2022 Jul;28:100350. Epub 2022 Apr 26. doi: 10.1016/j.jii.2022.100350
Dragomir AG, Van Woensel T, Dörner KF. The pickup and delivery problem with alternative locations and overlapping time windows. Computers & Operations Research. 2022 Jul;143:105758. doi: 10.1016/j.cor.2022.105758
Jalaldoust A, Hlavácková-Schindler K, Plant C. Causal Discovery in Hawkes Processes by Minimum Description Length. In Thirty-Sixth AAAI Conference on Artificial Intelligence; Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence; The Twelveth Symposium on Educational Advances in Artificial Intelligence. Palo Alto, California: AAAI Press. 2022. p. 6978-6987. (Proceedings of the ... National Conference on Artificial Intelligence; No. 6, Vol. 36). doi: 10.48550/arXiv.2206.06124, 10.1609/aaai.v36i6.20656
Tschiatschek S, Knobelsdorf M, Singla A. Equity and Fairness of Bayesian Knowledge Tracing. In Proceedings of the 15th International Conference on Educational Data Mining, EDM 2022. 2022 doi: 10.5281/zenodo.6853012
Bettiol E, Bomze I, Létocart L, Rinaldi F, Traversi E. Mining for diamonds: Matrix generation algorithms for binary quadratically constrained quadratic problems. Computers and Operations Research. 2022 Jun;142:105735. doi: 10.1016/j.cor.2022.105735
Kriege NM. Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited. arXiv.org. 2022 May 22. doi: 10.48550/arXiv.2205.10914
Scherbela M, Reisenhofer R, Gerard L, Marquetand P, Grohs P. Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks. Nature Computational Science. 2022 May 19;2(5):331–341. doi: 10.1038/s43588-022-00228-x
Bomze I, Gabl M, Maggioni F, Pflug G. Two-stage stochastic standard quadratic optimization. European Journal of Operational Research. 2022 May 16;299(1):21-34. doi: 10.1016/j.ejor.2021.10.056
Molnar C, König G, Herbinger J, Freiesleben T, Dandl S, Scholbeck CA et al. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models. In Holzinger A, Goebel R, Fong R, Moon T, Müller KR, Samek W, editors, xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. 1 ed. Cham: Springer. 2022. p. 39-68. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). Epub 2021 Aug 17. doi: 10.1007/978-3-031-04083-2_4
Oettershagen L, Mutzel P, Kriege NM. Temporal Walk Centrality: Ranking Nodes in Evolving Networks. In Laforest F, Troncy R, editors, WWW 2022 - Proceedings of the ACM Web Conference 2022. New York, NY: Association for Computing Machinery (ACM). 2022. p. 1640-1650 doi: 10.48550/arXiv.2202.03706, 10.1145/3485447.3512210
Bomze I, Gabl M. Uncertainty preferences in robust mixed-integer linear optimization with endogenous uncertainty. SIAM Journal on Optimization. 2022 Mar 24;32(1):292-318. doi: 10.1137/20M1355422
Bomze I, Rinaldi F, Zeffiro D. Fast cluster detection in networks by first-order optimization. SIAM Journal on Mathematics of Data Science. 2022 Mar 4;4(1):285-305. Epub 2021 Mar 29. doi: 10.1137/21M1408658
Bauer L, Hirsch F, Jones C, Hollander M, Grohs P, Anand A et al. Quantification of Kuramoto Coupling Between Intrinsic Brain Networks Applied to fMRI Data in Major Depressive Disorder. Frontiers in Computational Neuroscience. 2022 Mar 3;16:729556. doi: 10.3389/fncom.2022.729556
Schneckenreiter G, Herrmann L, Reisenhofer R, Popper N, Grohs P. Assessing the heterogeneity in the transmission of infectious diseases from time series of epidemiological data. medRxiv. 2022 Mar 1. doi: 10.1101/2022.02.21.22271241
Kinast A, Dörner KF, Rinderle-Ma S. Combing metaheuristics and process mining: Improving cobot placement in a combined cobot assignment and job shop scheduling problem. In Procedia Computer Science. Vol. 200. Elsevier. 2022. p. 1836-1845 doi: 10.1016/j.procs.2022.01.384
Huggins JE, Krusienski D, Vansteensel MJ, Valeriani D, Thelen A, Stavisky S et al. Workshops of the eighth international brain–computer interface meeting: BCIs: the next frontier. Brain-Computer Interfaces. 2022 Feb 8;9(2):69-101. doi: 10.1080/2326263X.2021.2009654
Kutyniok G, Petersen PC, Raslan M, Schneider R. A theoretical analysis of deep neural networks and parametric PDEs. Constructive Approximation. 2022 Feb;55(1):73-125. Epub 2021 Jun 2. doi: 10.1007/s00365-021-09551-4
Showing entries 121 - 140 out of 273