Publications

König G, Freiesleben T, Grosse-Wentrup M. Improvement-focused causal recourse (ICR). 2023. Paper presented at The 37th AAAI Conference on Artificial Intelligence, Washington, District of Columbia, United States.

Schmude T, Koesten L, Möller T, Tschiatschek S. On the Impact of Explanations on Understanding of Algorithmic Decision-Making. 2023. Paper presented at ACM FAccT Conference 2023, Chicago, United States. Epub 2023 Feb 16. doi: 10.1145/3593013.3594054

Raggam P, Zrenner C, McDermott EJ, Ziemann U, Grosse-Wentrup M. Predicting high-quality movements in post-stroke motor rehabilitation from EEG. 2023. 10th International BCI Meeting, Brussels, Belgium.

Poletti S, Testolin A, Tschiatschek S. Learning Constraints From Human Stop-Feedback in Reinforcement Learning. In he proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2023). 2023

Lindner D, Chen X, Tschiatschek S, Hofmann K, Krause A. Learning Safety Constraints from Demonstrations with Unknown Rewards. arXiv.org. 2023 May 25. doi: 10.48550/arXiv.2305.16147

Meingast S, Alves J, Bouy H, Petr-Gotzens MG, Fürnkranz V, Großschedl JE et al. VISIONS: The VISTA Star Formation Atlas. I. Survey overview. Astronomy & Astrophysics. 2023 May;673:A58. Epub 2023 May 11. doi: 10.1051/0004-6361/202245771

Morris C, Lipman Y, Maron H, Rieck B, Kriege NM, Grohe M et al. Weisfeiler and Leman go Machine Learning: The Story so far. Journal of Machine Learning Research. 2023 May;24(333):1-59.

Oettershagen L, Kriege NM, Jordan C, Mutzel P. A Temporal Graphlet Kernel For Classifying Dissemination in Evolving Networks. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). 2023. p. 19-27 doi: 10.1137/1.9781611977653.ch3

Chen Z, Wu Z, Zhong L, Plant C, Wang S, Guo W. Attributed Multi-order Graph Convolutional Network for Heterogeneous Graphs. arXiv. 2023 Apr 18. doi: 10.48550/arXiv.2304.06336

Bauer LGM, Leiber C, Böhm C, Plant C. Extension of the Dip-test Repertoire - Efficient and Differentiable p-value Calculation for Clustering. In Proceedings of the 2023 SIAM International Conference on Data Mining, SDM 2023, Minneapolis-St. Paul Twin Cities, MN, USA, April 27-29, 2023. SIAM. 2023. p. 109-117

Sun X, Song Z, Yu Y, Dong J, Plant C, Böhm C. Network Embedding via Deep Prediction Model. IEEE Transactions on Big Data. 2023 Apr 1;9(2):455-470. Epub 2022 Jul 28. doi: 10.1109/TBDATA.2022.3194643

Foerster KT, Marette T, Neumann S, Plant C, Sadikaj Y, Schmid S et al. Analyzing the Communication Clusters in Datacenters. In Ding Y, Tang J, Sequeda JF, Aroyo L, Castillo C, Houben GJ, editors, Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023. New York: ACM. 2023. p. 3022-3032 doi: 10.1145/3543507.3583410

Schmude T, Koesten L, Möller T, Tschiatschek S. Applying Interdisciplinary Frameworks to Understand Algorithmic Decision-Making. 2023. Paper presented at ACM CHI Conference on Human Factors in Computing Systems 2023, Hamburg, Germany.

Bomze I, Peng B. Conic formulation of QPCCs applied to truly sparse QPs. Computational Optimization and Applications: an international journal. 2023 Apr;84(3):703-735. Epub 2022 Dec 13. doi: 10.1007/s10589-022-00440-5

Sadikaj Y, Rass J, Velaj Y, Plant C. Semi-Supervised Embedding of Attributed Multiplex Networks. In Ding Y, Tang J, Sequeda JF, Aroyo L, Castillo C, Houben GJ, editors, Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023. New York: ACM. 2023. p. 578-587 doi: 10.1145/3543507.3583485

Ambros R, Bernsteiner A, Bloem R, Dolezal D, Garzia D, Göltl K et al. Two-Year Progress of Pilot Research Activities in Teaching Digital Thinking Project (TDT). Zeitschrift für Hochschulentwicklung. 2023 Apr;18(Sonderheft Hochschullehre):117-136. doi: 10.3217/zfhe-SH-HL/07

Sadegh S, Skelton J, Anastasi E, Wipat A, Möller A, Blumenthal DB et al. Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond. Nature Communications. 2023 Mar 25;14(1):1662. doi: 10.1038/s41467-023-37349-4

Grohs P, Klotz A, Voigtlaender F. Phase Transitions in Rate Distortion Theory and Deep Learning. Foundations of Computational Mathematics. 2023 Feb;23(1):329-392. Epub 2021 Nov 16. doi: 10.1007/s10208-021-09546-4