
Object Recognition/Detection

Radovan Fusek

2nd International summer school on "Deep Learning and
Visual Data Analysis"

Our work presented here was partially supported by the EU H2020 686782 PACMAN project, (solved with Honeywell), http://mrl.cs.vsb.cz/h2020

2018

What is Object Detection/Recognition?

▪ Output?
▪ position of the objects
▪ scale of the objects
▪ name of the objects

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

Sliding Window - Main Idea

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

Feature Vector

(gradient, HOG, LBP, …)

Trainable Classifier

(SVM, ANNs, …)

Related Works

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

Generating Training Set

▪ negative set - without the object of interest
▪ positive set

▪ rotation
▪ noise
▪ Illumination
▪ scale

Generating Training Set http://mrl.cs.vsb.cz/eyedataset

http://mrl.cs.vsb.cz/eyedataset

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

Related Works

Papageorgiou
(2000)

Viola, Jones
(2001,2004)
cit. > 6500

Dalal, Triggs
(2005)

cit. > 10000

2000

2005

Features

▪ faces have similar properties
▪ eye regions are darker than the upper-cheeks
▪ the nose bridge region is brighter than the eyes

https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html

Features

▪ Rectangular features

Features

Feature Selection

Feature Selection

▪ weak classifier - each single rectangle feature (features
as weak classifiers)

▪ during each iteration, each example/image receives a
weight determining its importance

▪ AdaBoost (Adaptive Boost) is an iterative learning
algorithm to construct a “strong” classifier as a linear
combination of weighted simple “weak” classifiers

p AdaBoost starts with a uniform
distribution of “weights” over training
examples.

p Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

p Increase the weights on the training
examples that were misclassified.

p (Repeat)

p At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

Feature Selection

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

https://vimeo.com/12774628

Haar Features

• Fabián, T.: A Vision-based Algorithm for Parking Lot Utilization Evaluation Using Conditional
Random Fields. In 9th International Symposium on Visual Computing ISVC 2013, pp. 1-12
(2013)

• Fusek, R., Mozdřeň, K., Šurkala, M., Sojka, E.: AdaBoost for Parking Lot Occupation
Detection. Advances in Intelligent Systems and Computing, vol. 226, pp. 681-690 (2013)

Parking Lot Occupation

http://mrl.cs.vsb.cz/

Haar Features
The modified version of Haar-like features that more properly reflect the shape of the
pedestrians than the classical Haar-like features.

Hoang, V.D., Vavilin, A., Jo, K.H.: Pedestrian detection approach based on modified haar-like features and adaboost. In:
Control, Automation and Systems (ICCAS), 2012 12th International Conference on. pp. 614-618 (Oct 2012)

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

Related Works

Papageorgiou
(2000)

Viola, Jones
(2001,2004)

Dalal, Triggs
(2005)

cit. 10947

2000

2005

Histograms of Oriented Gradients (HOG)

Basic Steps:

• In HOG, a sliding window is used for detection.

• The window is divided into small connected
cells.

• The histograms of gradient orientations are
calculated in each cell.

• Support Vector Machine (SVM) classifier.

http://host.robots.ox.ac.uk/pascal/VOC/voc2006/slides/dalal.ppt

Histograms of Oriented Gradients (HOG)
Blocks, Cells:

Histograms of Oriented Gradients (HOG)

Blocks, Cells:

• 8 x 8 cell

• 16 x 16 block – overlap

• normalization within the blocks

Final Vector: Collect HOG blocks into vector

Histograms of Oriented Gradients (HOG)

Practical Example – Detection + Recognition

Consider the following problem: Find and recognize two following lego kits

OpenCV - http://opencv.org/

http://opencv.org/

Detection step - HOG+SVM (OpenCV)

https://docs.opencv.org/3.1.0/d1/d73/tutorial_introduction_to_svm.html

https://docs.opencv.org/3.1.0/d1/d73/tutorial_introduction_to_svm.html

Alien

Avenger

Detection step - HOG+SVM (OpenCV)

Detection step - HOG+SVM (OpenCV)
Sliding Window (detectMultiScale)

https://github.com/opencv/opencv/blob/master/samples/cpp/train_HOG.cpp

https://github.com/opencv/opencv/blob/master/samples/cpp/train_HOG.cpp

Detection step - HOG+SVM (OpenCV)

Detection step - HOG+SVM (OpenCV)

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

Related Works

Ahonen at al.
(2006)

1300 cit. SCOPUS

Zhang at al.
(2007)

2006

2009

Xiaohua at al.
(2009)

LBP - Local Binary Patterns

• Were introduced by Ojala et al. for the texture analysis.

• The main idea behind LBP is that the local image
structures (micro patterns such as lines, edges, spots, and
flat areas) can be efficiently encoded by comparing every
pixel with its neighboring pixels.

• Fast and cheap technique

LBP - Local Binary Patterns

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html

LBP - Local Binary Patterns

• Robust to monotonic changes in illumination

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html

LBP - Local Binary Patterns

Ojala T, Pietikäinen M & Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with
Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987

LBP - Local Binary Patterns

Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. II–797–II–804

Vol.2 (2004)

LBP - Local Binary Patterns

Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: Proceedings of the 2007
international conference on Advances in Biometrics. pp. 11–18. ICB’07, Springer-Verlag, Berlin, Heidelberg (2007)

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

KeyPoints
The goal is to find image KeyPoints that are invariant in the terms of scale,
orientation, position, illumination, partially occlusion.

KeyPoints – Eye Detection

template

KeyPoints – Eye Detection

https://docs.opencv.org/3.1.0/d5/d6f/tutorial_feature_flann_matcher.html

https://docs.opencv.org/3.1.0/d5/d6f/tutorial_feature_flann_matcher.html

Recognition
Alien vs. Avenger

? ?

Object Detection/Recognition

▪ Haar

▪ HOG

▪ LBP

▪ SIFT, SURF KeyPoints

▪ CNNs

▪ Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

CNNs – Main Steps (LeNet)

1. Convolution

2. Non Linearity (ReLU)

3. Pooling or Sub Sampling

4. Classification (Fully Connected Layer)

https://www.clarifai.com/technology

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

https://www.clarifai.com/technology

1. Convolution

Input Image

Mask/Filter

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

+ ReLU + ReLU

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

1. Convolution
Multiply the image pixels by pixels of the filter, then sum the results

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

+ ReLU + ReLU

Mask/Filter

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

1. Convolution

+ ReLU + ReLU

http://dimitroff.bg/image-filtering-your-own-instagram/

1. Convolution

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

+ ReLU + ReLU

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

1. Convolution

• Before training, we have many filters/kernels
• Filter values are randomized

• Depth of this conv. layer corresponds to the
number of filters we use for the convolution
operation

• The filters are learned during the training

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

+ ReLU + ReLU

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

2. Non Linearity (ReLU)
• ReLU is used after every Convolution operation
• The goal of this step is to replace all negative pixels by zero in

the feature map

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

+ ReLU + ReLU

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

3. Pooling
(Subsampling or downsampling)

• The goal of this step is to reduce the dimensionality of each
feature map but preserve important informations

• Operations: e.g. Sum, Average, Max

+ ReLU + ReLU

3. Pooling
(Subsampling or downsampling)

• Common way is a pooling layer with filters of size 2x2
applied with a stride of 2

http://cs231n.github.io/convolutional-networks/

+ ReLU + ReLU

http://cs231n.github.io/convolutional-networks/

3. Pooling
(Subsampling or downsampling)

• Common way is a pooling layer with filters of size 2x2
applied with a stride of 2

+ ReLU + ReLU

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Conv. + ReLU + POOL

• Convolution layers and Pooling layers can be repeated any number
of times in a single ConvNet.

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

4. Classification

• Multi Layer Perceptron
• The number of filters, filter sizes, architecture of the network etc.

are fixed and do not change during training process.
• Only the values of the filter matrix and connection weights get

updated.

http://cs231n.github.io/convolutional-networks/

+ ReLU + ReLU

http://cs231n.github.io/convolutional-networks/

4. CovNet Architectures
• LeNet (1990s)

• AlexNet (2012)

• ZF NET (2013)

• GoogLeNet (2014)

• VGGNet (2014)

• ResNets (2015)

• DenseNet (2016)
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Dlib http://dlib.net

http://dlib.net

http://dlib.net/
http://dlib.net/

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image

Input Image Convolution
+ ReLU

Pooling Convolution
+ ReLU Pooling Fully Connected

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image Convolution
+ ReLU

Pooling Convolution
+ ReLU Pooling Fully Connected

6 conv. filters
5x5 filter size

1x1 stride
+ReLU

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

MAX POOLING
2x2 window
2x2 stride

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image Convolution
+ ReLU

Pooling Convolution
+ ReLU Pooling Fully Connected

16 conv. filters
5x5 filter size

1x1 stride
+ReLU

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

MAX POOLING
2x2 window
2x2 stride

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image Convolution
+ ReLU

Pooling Convolution
+ ReLU Pooling Fully Connected

Fully connected layer
120 neurons
84 neurons

10 outputs/classes
multiclass classification

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (Dlib + OpenCV)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs (dlib)

CNNs (Dlib)

http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html

NVIDIA 1080ti - 39 frames per second, 928x478

http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html

Thank you for your attention

http://mrl.cs.vsb.cz

http://mrl.cs.vsb.cz/

