
Nature–inspired and deep methods
for feature selection

Pavel Krömer Jan Platoš1

Data Science Summer School @ Uni Vienna
1Dept. of Computer Science,
VŠB - Technical University of Ostrava,
Ostrava, Czech Republic
{pavel.kromer,jan.platos}@vsb.cz



Outline

Introduction

Feature subset selection

Nature–inspired feature subset
selection

Genetic algorithms

Differential evolution

Compression–based data entropy
estimation

Compression–based evolutionary
feature subset selection

Experiments

Lesson learned
Deep feature selection
Summary

September 04 2018, Vienna, AT 2



Introduction

September 04 2018, Vienna, AT 2



Introduction

Problem statement
Modern datasets comprise of millions of records, many thousands of
features.

Feature (subset) selection is an established procedure to reduce
data dimensionality, which is good for performance and accuracy (of
e.g. classification).

Nature–inspired feature selection methods, based on the principles
of evolutionary computation, have shown potential to efficiently
process very-high-dimensional datasets.
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Feature subset selection

Feature subset selection (FSS) is a high–level search for an optimum
subset of data features selected according to a particular set of
criteria.

In a data set, Y = {A ∪ Z}, A = {a1,a2, . . .an} is a set of input
features, find B ⊂ A so that feval(B) is maximized.

FSS can be formulated as an optimization or e.g. search problem.

The definition of the evaluation criteria is a paramount aspect of
evolutionary feature selection that highly depends on the purpose
of the FSS.
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Nature–inspired feature subset selection
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Evolutionary computation

Evolutionary computation is a group of iterative stochastic search
and optimization methods based on the programmatical emulation
of successful optimization strategies observed in nature.
Evolutionary algorithms use Darwinian evolution and Mendelian
inheritance to model the survival of the fittest using the processes
of selection and heredity.
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Genetic algorithms

The Genetic Algorithm (GA) is a population-based, meta-heuristic,
soft optimization method. GAs can solve complex optimization
problems by evolving a population of encoded candidate solutions.
The solutions are ranked using a problem specific fitness function.
Artificial evolution, implemented by iterative application of genetic
and selection operators, leads to the discovery of solutions with
above-average fitness.

September 04 2018, Vienna, AT 6



Basic principles of GA

Encoding
Problem encoding is an important part of GA. It translates candidate
solutions from the problem domain (phenotype) to the encoded search
space (genotype) of the algorithm. The representation specifies the
chromosome data structure and the
decoding function.

Genetic operators
Crossover recombines two or more chromosomes. It propagates so called
building blocks (solution patterns with above average fitness) from one
generation to another, and creates new, better performing, building blocks.

In contrast, mutation is expected to insert new material into the population
by random perturbation of chromosome structure. This way, new building
blocks can be created or old disrupted.
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Differential evolution

Differential evolution (DE) is a versatile stochastic evolutionary
optimization algorithm for real-valued problems. It uses differential
mutation

v⃗i = v⃗r1 + F
(⃗
vr2 − v⃗r3

)
, (1)

and crossover operator

l = rand(1,N), (2)

vij =
{
vij, if (rand(0, 1) < C) or j = l
xij, otherwise

(3)

to evolve a population of
parameter vectors.

vr3

-vr3

vr2

vr2 - vr3

F(vr2 - vr3)

vr1

 vr1  +  F(vr2 - vr3)
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Evolutionary feature subset selection

Evolutionary FSS Types
Wrapper–based approaches look for subsets of features for which
particular classification algorithm reaches the highest accuracy.

Filter–based approaches are classifier independent and utilize
various indirect feature subset evaluation measures (e.g. statistical,
geometric, information-theoretic).

Here, we use two evolutionary methods for fixed–length subset selec-
tion and a fitness function based on compression–based data entropy
estimation to establish a novell filter–based evolutionary FSS.
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Compression–based data entropy estimation

Entropy is a general concept that expresses the amount of
information contained in a message.

Entropy of a random variable, X, consisting of a sequence of values,
x1, x2, . . . , xn, is defined by

H(X) = −
∑
i

P(xi) log2 P(xi) (4)

Entropy is used as a basis of a number of derived measures
including conditional entropy, H(X|Y), and information gain.

It is the basis of several feature selection methods, but is generally
hard to evaluate in practical settings.

Computationally efficient entropy estimators are used in place of
exact measures.
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Compression–based data entropy estimation (cont.)

Compression–based data entropy estimation
A computationally feasible approach to entropy estimation for
real–world applications with solid theoretical background (Shannon
Entropy ≈ Kolmogorov complexity).

Kolmogorov complexity (of a binary string), K(x), is the length of the
shortest program that can produce x.

Conditional Kolmogorov complexity, K(x|y), is analogous to
conditional entropy.

Kolmogorov complexity is non–computable, but has been associated
with data compression (Li et al., 2004; Cilibrasi and Vitanyi, 2005).

K(x|y) ≈ C(x · y), (5)

given C(x) ≈ C(x · x).
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Compression–based evolutionary feature subset selection

Objective
Develop a filter–based evolutionary feature subset method with
entropy (compression) as the basis for feature subset evaluation (i.e.
solve a specific fixed–length subset selection problem).

Methods
Genetic algorithms (GA) – a GA for fixed–length subset selection with
compact chromosomes, crossover and mutation, w/o creation of
invalid individuals.

Differential evolution (DE) – a no–frills DE for fixed–length subset
selection to see how a continuous algorithm does.

FPC, a fast lossless compression algorithm for double-precision
floating-point data (Burtscher and Ratanaworabhan, 2009) as the
fitness function.
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Experiments

An in-house implementation of GA (steady-state, with generation
gap 2) and DE (/DE/rand/1) with FPC as fitness function.

Two data sets from the UCI Machine Learning Repository (Hepatitis,
Spambase)

A battery of well-known classification methods (CART, Naive Bayes,
k-Nearest Neighbours)

Data set properties and the number of classification errors for full data sets.

Classification errors

Dataset Attrs. Records CART NB kNN(1) kNN(3)

Hepatitis 20 80 0 11 8 13
Spambase 58 4601 3 513 3 216
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Experiments (cont.)

FPC as a feature subset selection criterion
All possible subsets of 2, 3, and 4 features were analyzed for the test
data sets.

FPC and classification error were computed for each subset.

Rank correlation (Spearman’s ρ and p−value) between FPC and the number
of classification errors (p−value shown in parentheses).

Classifier

Dataset CART NB kNN(1) kNN(3)

Hepatitis -0.786 -0.039 -0.781 -0.688
(3.9E−7) (0.6) (2.2E−36) (2.5E−25)

Spambase -0.840 -0.300 -0.534 -0.530
(0.0) (1.2E−34) (1.7E−118) (4.6E−116)
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Experiments (cont.)

FPC vs. classification errors in the Hepatitis data set
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Experiments (cont.)

FPC vs. classification errors in the Spambase data set
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Experiments (cont.)

GA and DE as feature subset selection metaheuristics
Both methods executed with the best parameters found by
trial-and-error runs, a total of 10,000 ff. evaluations each, 50
independent runs.

The percent of feature subsets with FPC lower than best, average, and worst
subsets found by the investigated methods.

GA percentile DE percentile

Dataset k best average worst best average worst

Hepati 2 99.42 57.89 2.34 99.42 99.42 99.42
tis 3 100.00 94.22 24.10 100.00 100.00 100.00

4 99.96 97.81 33.13 99.96 99.96 99.96

Spam 2 100.00 99.81 47.99 100.00 100.00 100.00
base 3 100.00 99.99 4.97 100.00 100.00 100.00

4 100.00 100.00 100.00 100.00 99.99 99.99

Note: all the best solutions have found feature subsets with maximum possible FPC
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Experiments (cont.)

CART and kNN(1) classification errors of 2-feature subsets evolved by GA and
DE on the Hepatitis (1st row) and Spambase data sets (2nd row).
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Experiments (cont.)

The final FPC of feature subsets evolved by the GA and the DE.

FPC of GA-evolved feature subsets FPC of DE-evolved feature subsets

Dataset k best average (σ) worst best average (σ) worst

Hepatitis 2 1195 939.52 (331.43) 230 1195 1195 (0) 1195
3 1796 1694.94 (255.15) 646 1796 1796 (0) 1796
4 2380 2274.38 (294.86) 1238 2380 2380 (0) 2380
5 2972 2887.30 (303.79) 1317 2972 2972 (0) 2972

10 4728 4677.40 (277.75) 2743 4728 4727.90 (0.30) 4727
15 5544 5261.40 (457.61) 3989 5544 5518.04 (32.31) 5452

Spambase 2 66064 63203.02 (11328.08) 16671 66064 66064 (0) 66064
3 97466 95822.56 (11504.08) 15294 97466 97466 (0) 97466
4 122431 122431 (0) 122431 122431 122318.92 (549.08) 119629
5 142234 142234 (0) 142234 142234 142110.56 (604.73) 139148

10 228155 221059.80 (5283.04) 210622 217278 206335.58 (4840.57) 198413
15 287258 276567.86 (7387.49) 258259 274438 260328.52 (5225.25) 251003
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Lesson learned

An efficient feature subset evaluation criterion based on a fast
approximation of feature subset entropy was proposed and
evaluated.

Results suggest that the fitness function based on FPC is reasonable
– feature subsets with high values of FPC correspond to feature
subsets that yield low classification error of test classifiers.

The DE performs better for small data and/or low–dimensional
feature subsets while the GA seems to be more suitable for large
data and larger feature subsets.
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Deep feature selection
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Deep learning

Deep learning solves the representation learning problem by
introducing representations that are expressed in terms of other,
(simpler) representations.

Creates a hierarchy of representations. More complex concepts are
defined as composition of simpler ones and a clear interpretation of
filters is desired.
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Example: Convolutional neural network (visualization)
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Example: Representation learning (autoencoder/Diablo network)

Input
H1

Hk

...

...

Hn
Output

Encoder Decoder

Code = Representation
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Deep feature selection

Deep feature selection (DFS) is a family of methods that use the
principles of deep learning for feature selection.

They seek a higher–level representation of features (HLF) and try to
utilize them, directly or indirectly, in the feature selection process.

Example

Sentiment is a higher–level feature of texts (e.g. reviews). It can be
learned in a semi–supervised manner via an algoritihm (Active Deep
Network) based on Restricted Bolzmann Machines (Ruangkanokmas
et al., 2016).

DFS with HLF × DFS as a reconstruction problem × DFS
via weight learning
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Feature selection with higher–level features

HLF as an input for feature selection
Higher–level features can be used to
replace continous features for a
standard feature selection algorithm
(Nezhad et al. 2016).

September 04 2018, Vienna, AT 26



Feature selection with higher–level features (cont.)

HLF in a data transformation pipeline
Data dimension is first reduced by PCA. Deep sparse encoding of the
data is obtained (via stacked autoencoders). In the end, the learned
higher–level features are used together with original features (raw
data) for classification (Fakoor et al., 2013)
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Deep feature selection as a reconstruction problem

An autoencoder/deep belief network is used to learn a sparse
representation (code) of input features.

Features with low reconstruction error are selected.

Input
H1

Hk

... ...

Hn
Output
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Feature selection via weight learning

A neural model can be augmented by an additional layer that serves
as a sparse one-to-one linear connection between input and first
hidden layer (Li et al., 2016).

Most important features are those with high weights after training.
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Summary
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Summary

Feature selection is an important data (pre)processing step.

A variety of nature–inspired methods can be used to implement
efficient feature selection schemes.

Deep feature selection is one of the hot topics in this area, bringing
new opportunities and research challenges.
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Data scientist’s life is full of wonderful options!
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