
Introduction to (Convolutional) Neural Networks

Philipp Grohs

Summer School DL and Vis, Sept 2018

Syllabus

1 Motivation and Definition

2 Universal Approximation

3 Backpropagation

4 Stochastic Gradient Descent

5 The Basic Recipe

6 Going Deep

7 Convolutional Neural Networks

8 What I didn’t tell you

1 Motivation and Definition

Which Method to Choose?

We have seen linear Regression, kernel regression, regularization,
K-PCA, K-SVM, ... and there exist a zillion other methods.

Is there a universally best method?

Which Method to Choose?

We have seen linear Regression, kernel regression, regularization,
K-PCA, K-SVM, ... and there exist a zillion other methods.

Is there a universally best method?

No Free Lunch Theorem

“No Free Lunch” Theorem [Wolpert(1996)], Informal Version

Of course not!!

“Proof” of the “Theorem”

If ρ is completely arbitrary and nothing is known, we cannot possibly
infer anything about ρ from samples ((xi, yi))

m
i=1...

Every algorithm will have a specific preference, for example as
specified through the hypothesis class H – all “categories” are
artificial!

We want our algorithm to reproduce the artificial categories
produced by our brain – so let’s build a hypothesis class that mimicks
our thinking!

No Free Lunch Theorem

“No Free Lunch” Theorem [Wolpert(1996)], Informal Version

Of course not!!

“Proof” of the “Theorem”

If ρ is completely arbitrary and nothing is known, we cannot possibly
infer anything about ρ from samples ((xi, yi))

m
i=1...

Every algorithm will have a specific preference, for example as
specified through the hypothesis class H – all “categories” are
artificial!

We want our algorithm to reproduce the artificial categories
produced by our brain – so let’s build a hypothesis class that mimicks
our thinking!

No Free Lunch Theorem

“No Free Lunch” Theorem [Wolpert(1996)], Informal Version

Of course not!!

“Proof” of the “Theorem”

If ρ is completely arbitrary and nothing is known, we cannot possibly
infer anything about ρ from samples ((xi, yi))

m
i=1...

Every algorithm will have a specific preference, for example as
specified through the hypothesis class H – all “categories” are
artificial!

We want our algorithm to reproduce the artificial categories
produced by our brain – so let’s build a hypothesis class that mimicks
our thinking!

No Free Lunch Theorem

“No Free Lunch” Theorem [Wolpert(1996)], Informal Version

Of course not!!

“Proof” of the “Theorem”

If ρ is completely arbitrary and nothing is known, we cannot possibly
infer anything about ρ from samples ((xi, yi))

m
i=1...

Every algorithm will have a specific preference, for example as
specified through the hypothesis class H – all “categories” are
artificial!

We want our algorithm to reproduce the artificial categories
produced by our brain – so let’s build a hypothesis class that mimicks
our thinking!

No Free Lunch Theorem

“No Free Lunch” Theorem [Wolpert(1996)], Informal Version

Of course not!!

“Proof” of the “Theorem”

If ρ is completely arbitrary and nothing is known, we cannot possibly
infer anything about ρ from samples ((xi, yi))

m
i=1...

Every algorithm will have a specific preference, for example as
specified through the hypothesis class H – all “categories” are
artificial!

We want our algorithm to reproduce the artificial categories
produced by our brain – so let’s build a hypothesis class that mimicks
our thinking!

Neuroscience

The Brain as Biological Neural Network

“In neuroscience, a biological neural network is a series of
interconnected neurons whose activation defines a
recognizable linear pathway. The interface through which
neurons interact with their neighbors usually consists of
several axon terminals connected via synapses to dendrites
on other neurons. If the sum of the input signals into one
neuron surpasses a certain threshold, the neuron sends an
action potential (AP) at the axon hillock and transmits this
electrical signal along the axon.”

Source: Wikipedia

Neuroscience

The Brain as Biological Neural Network

“In neuroscience, a biological neural network is a series of
interconnected neurons whose activation defines a
recognizable linear pathway. The interface through which
neurons interact with their neighbors usually consists of
several axon terminals connected via synapses to dendrites
on other neurons. If the sum of the input signals into one
neuron surpasses a certain threshold, the neuron sends an
action potential (AP) at the axon hillock and transmits this
electrical signal along the axon.”

Source: Wikipedia

Neurons

recall: “If the sum of the input signals into one neuron surpasses a
certain threshold, [...] the neuron transmits this [...] signal [...].”

Neurons

recall: “If the sum of the input signals into one neuron surpasses a
certain threshold, [...] the neuron transmits this [...] signal [...].”

Artificial Neurons

x2 w2 Σ
{

1
∑

i xiwi − b > 0
0
∑

i xiwi − b ≤ 0

Activation

y

Output

x1 w1

x3 w3

Weights

Threshold
b

Inputs

Artificial Neuron

An artificial neuron with weights w1, . . . , ws, bias b and activation
function σ : R→ R is defined as the function

f(x1, . . . , xs) = σ

(
s∑
i=1

xiwi − b

)
.

Artificial Neurons

x2 w2 Σ
{

1
∑

i xiwi − b > 0
0
∑

i xiwi − b ≤ 0

Activation

y

Output

x1 w1

x3 w3

Weights

Threshold
b

Inputs

Artificial Neuron

An artificial neuron with weights w1, . . . , ws, bias b and activation
function σ : R→ R is defined as the function

f(x1, . . . , xs) = σ

(
s∑
i=1

xiwi − b

)
.

Activation Functions

Figure: Heaviside activation function (as in biological motivation)

Figure: Sigmoid activation function σ(x) = 1
1+e−x

Activation Functions

Figure: Heaviside activation function (as in biological motivation)

Figure: Sigmoid activation function σ(x) = 1
1+e−x

Artificial Neural Networks

Artificial neural networks consist of a graph, connecting artificial
neurons!

Dynamics difficult to model, due to loops, etc...

Artificial Neural Networks

Artificial neural networks consist of a graph, connecting artificial
neurons!

Dynamics difficult to model, due to loops, etc...

Artificial Neural Networks

Artificial neural networks consist of a graph, connecting artificial
neurons!

Dynamics difficult to model, due to loops, etc...

Artificial Feedforward Neural Networks

Use directed, acyclic graph!

Artificial Feedforward Neural Networks

Use directed, acyclic graph!

Artificial Feedforward Neural Networks

Definition

Let L, d,N1, . . . , NL ∈ N. A map Φ : Rd → RNL given by

Φ(x) = ALσ (AL−1σ (. . . σ (A1(x)))), x ∈ Rd,

is called a neural network. It is composed of affine linear maps
A` : RN`−1 → RN` , 1 ≤ ` ≤ L (where N0 = d), and non-linear
functions—often referred to as activation function—σ acting
component-wise. Here, d is the dimension of the input layer, L
denotes the number of layers, N1, . . . , NL−1 stands for the
dimensions of the L− 1 hidden layers, and NL is the dimension of
the output layer.

An affine map A : RN`−1 → RN` is given by x 7→Wx+ b with weight
matrix W ∈ RN`−1×N` and bias vector b ∈ RN` .

Artificial Feedforward Neural Networks

Definition

Let L, d,N1, . . . , NL ∈ N. A map Φ : Rd → RNL given by

Φ(x) = ALσ (AL−1σ (. . . σ (A1(x)))), x ∈ Rd,

is called a neural network. It is composed of affine linear maps
A` : RN`−1 → RN` , 1 ≤ ` ≤ L (where N0 = d), and non-linear
functions—often referred to as activation function—σ acting
component-wise. Here, d is the dimension of the input layer, L
denotes the number of layers, N1, . . . , NL−1 stands for the
dimensions of the L− 1 hidden layers, and NL is the dimension of
the output layer.

An affine map A : RN`−1 → RN` is given by x 7→Wx+ b with weight
matrix W ∈ RN`−1×N` and bias vector b ∈ RN` .

Artificial Feedforward Neural Networks

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

On the Biological Motivation

Artificial (feedforward) neural networks should not be confused with a
model for our brain:

Neurons are more complicated than simply weighted linear
combinations

Our brain is not “feedforward”

Biological neural networks evolve with time neuronal plasticity

...

Artificial feedforward neural networks constitute a mathematically
and computationally convenient but very simplistic mathematical
construct which is inspired by our understanding of how the brain
works.

Terminology

“Neural Network Learning”: Use neural networks of a fixed
“topology” as hypothesis class for regression or classification
tasks. This requires optimizing the weights and bias parameters.

“Deep Learning”: Neural network learning with neural
networks consisting of many (e.g., ≥ 3) layers.

Terminology

“Neural Network Learning”: Use neural networks of a fixed
“topology” as hypothesis class for regression or classification
tasks.

This requires optimizing the weights and bias parameters.

“Deep Learning”: Neural network learning with neural
networks consisting of many (e.g., ≥ 3) layers.

Terminology

“Neural Network Learning”: Use neural networks of a fixed
“topology” as hypothesis class for regression or classification
tasks. This requires optimizing the weights and bias parameters.

“Deep Learning”: Neural network learning with neural
networks consisting of many (e.g., ≥ 3) layers.

Terminology

“Neural Network Learning”: Use neural networks of a fixed
“topology” as hypothesis class for regression or classification
tasks. This requires optimizing the weights and bias parameters.

“Deep Learning”: Neural network learning with neural
networks consisting of many (e.g., ≥ 3) layers.

2 Universal Approximation

Approximation Question

Main Approximation Problem

Under which conditions on the activation function σ

can every
(continuous, or measurable) function f : Rd → RNL be arbitrarily
well approximated by a neural network, provided that we choose
N1, . . . , NL−1, L large enough?

Surely not! Suppose that σ is a polynomial of degree r. Then
σ(Ax) is a polynomial of degree ≤ r for all affine maps A and
therefore any neural network with activation function σ will be a
polynomial of degree ≤ r.

Approximation Question

Main Approximation Problem

Under which conditions on the activation function σ

can every
(continuous, or measurable) function f : Rd → RNL be arbitrarily
well approximated by a neural network, provided that we choose
N1, . . . , NL−1, L large enough?

Surely not!

Suppose that σ is a polynomial of degree r. Then
σ(Ax) is a polynomial of degree ≤ r for all affine maps A and
therefore any neural network with activation function σ will be a
polynomial of degree ≤ r.

Approximation Question

Main Approximation Problem

Under which conditions on the activation function σ

can every
(continuous, or measurable) function f : Rd → RNL be arbitrarily
well approximated by a neural network, provided that we choose
N1, . . . , NL−1, L large enough?

Surely not! Suppose that σ is a polynomial of degree r. Then
σ(Ax) is a polynomial of degree ≤ r for all affine maps A and
therefore any neural network with activation function σ will be a
polynomial of degree ≤ r.

Approximation Question

Main Approximation Problem

Under which conditions on the activation function σ can every
(continuous, or measurable) function f : Rd → RNL be arbitrarily
well approximated by a neural network, provided that we choose
N1, . . . , NL−1, L large enough?

Surely not! Suppose that σ is a polynomial of degree r. Then
σ(Ax) is a polynomial of degree ≤ r for all affine maps A and
therefore any neural network with activation function σ will be a
polynomial of degree ≤ r.

Universal Approximation Theorem

Theorem

Suppose that σ : R→ R continuous is not a polynomial and fix
d ≥ 1, L ≥ 2, NL ≥ 1 ∈ N and a compact subset K ⊂ Rd. Then for
any continuous f : Rd → RNl and any ε > 0 there exist
N1, . . . , NL−1 ∈ N and affine linear maps A` : RN`−1 → RN` ,
1 ≤ ` ≤ L such that the neural network

Φ(x) = ALσ (AL−1σ (. . . σ (A1(x)))), x ∈ Rd,

approximates f to within accuracy ε, i.e.,

sup
x∈K
|Φ(x)− Φ(x)| ≤ ε.

Neural networks are “universal
approximators” and one hidden layer is
enough if the number of nodes is sufficient!

Skip Proof

Universal Approximation Theorem

Theorem

Suppose that σ : R→ R continuous is not a polynomial and fix
d ≥ 1, L ≥ 2, NL ≥ 1 ∈ N and a compact subset K ⊂ Rd. Then for
any continuous f : Rd → RNl and any ε > 0 there exist
N1, . . . , NL−1 ∈ N and affine linear maps A` : RN`−1 → RN` ,
1 ≤ ` ≤ L such that the neural network

Φ(x) = ALσ (AL−1σ (. . . σ (A1(x)))), x ∈ Rd,

approximates f to within accuracy ε, i.e.,

sup
x∈K
|Φ(x)− Φ(x)| ≤ ε.

Neural networks are “universal
approximators” and one hidden layer is
enough if the number of nodes is sufficient!

Skip Proof

Proof of the Universal Approximation Theorem

For simplicity we only the case of one hidden layer, e.g., L = 2 and
one output neuron, e.g., NL = 1:

Φ(x) =

N1∑
i=1

ciσ(wi · x− bi), wi ∈ Rd, ci, bi ∈ R.

Proof of the Universal Approximation Theorem

For simplicity we only the case of one hidden layer, e.g., L = 2 and
one output neuron, e.g., NL = 1:

Φ(x) =

N1∑
i=1

ciσ(wi · x− bi), wi ∈ Rd, ci, bi ∈ R.

Proof of the Universal Approximation Theorem

We will show the following.

Theorem

For d ∈ N and σ : R→ R continuous consider

R(σ, d) := span
{
σ(w · x− b) : w ∈ Rd, b ∈ R

}
.

Then R(σ, d) is dense in C(Rd) if and only if σ is not a polynomial.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

Proof for d = 1 and σ smooth

if σ is not a polynomial, there exists x0 ∈ R with σ(k)(−x0) 6= 0
for all k ∈ N.

constant functions can be approximated because

σ(hx− x0)→ σ(−x0) 6= 0, h→ 0.

linear functions can be approximated because

1

h
(σ((λ+ h)x− x0)− σ(λx− x0))→ xσ′(−x0), h, λ→ 0.

same argument polynomials in x can be approximated.

Stone-Weierstrass Theorem yields the result.

General d

Note that the functions

span{g(w · x− b) : w ∈ Rd, b ∈ R, g ∈ C(R) arbitrary},

are dense in C(Rd) (just take g as sin(w · x), cos(w · x) just as
in the Fourier series case).

First approximate f ∈ C(Rd) by

N∑
i=1

digi(vi · x− ei), vi ∈ Rd, di, ei ∈ R, gi ∈ C(R).

Then apply our univariate result to approximate the univariate
functions t 7→ gi(t− ei) using neural networks.

General d

Note that the functions

span{g(w · x− b) : w ∈ Rd, b ∈ R, g ∈ C(R) arbitrary},

are dense in C(Rd) (just take g as sin(w · x), cos(w · x) just as
in the Fourier series case).

First approximate f ∈ C(Rd) by

N∑
i=1

digi(vi · x− ei), vi ∈ Rd, di, ei ∈ R, gi ∈ C(R).

Then apply our univariate result to approximate the univariate
functions t 7→ gi(t− ei) using neural networks.

General d

Note that the functions

span{g(w · x− b) : w ∈ Rd, b ∈ R, g ∈ C(R) arbitrary},

are dense in C(Rd) (just take g as sin(w · x), cos(w · x) just as
in the Fourier series case).

First approximate f ∈ C(Rd) by

N∑
i=1

digi(vi · x− ei), vi ∈ Rd, di, ei ∈ R, gi ∈ C(R).

Then apply our univariate result to approximate the univariate
functions t 7→ gi(t− ei) using neural networks.

General d

Note that the functions

span{g(w · x− b) : w ∈ Rd, b ∈ R, g ∈ C(R) arbitrary},

are dense in C(Rd) (just take g as sin(w · x), cos(w · x) just as
in the Fourier series case).

First approximate f ∈ C(Rd) by

N∑
i=1

digi(vi · x− ei), vi ∈ Rd, di, ei ∈ R, gi ∈ C(R).

Then apply our univariate result to approximate the univariate
functions t 7→ gi(t− ei) using neural networks.

The case that σ is nonsmooth

pick family (gε)ε>0 of mollifiers, i.e.

lim
ε→0

σ ∗ gε → σ

uniformly on compacta.

Apply previous result to the smooth function σ ∗ gε and let ε→ 0:

�

The case that σ is nonsmooth

pick family (gε)ε>0 of mollifiers, i.e.

lim
ε→0

σ ∗ gε → σ

uniformly on compacta.

Apply previous result to the smooth function σ ∗ gε and let ε→ 0:

�

The case that σ is nonsmooth

pick family (gε)ε>0 of mollifiers, i.e.

lim
ε→0

σ ∗ gε → σ

uniformly on compacta.

Apply previous result to the smooth function σ ∗ gε and let ε→ 0:

�

The case that σ is nonsmooth

pick family (gε)ε>0 of mollifiers, i.e.

lim
ε→0

σ ∗ gε → σ

uniformly on compacta.

Apply previous result to the smooth function σ ∗ gε and let ε→ 0:

�

3 Backpropagation

Regression/Classification with Neural Networks

Neural Network Hypothesis Class

Given d, L,N1, . . . , NL and σ define the associated hypothesis class

H[d,N1,...,NL],σ :={
ALσ (AL−1σ (. . . σ (A1(x)))) : A` : RN`−1 → RN` affine linear

}
.

Typical Regression/Classification Task

Given data z = ((xi, yi))
m
i=1 ⊂ Rd × RNL , find the empirical

regression function

fz ∈ argminf∈H[d,N1,...,NL],σ

m∑
i=1

L(f, xi, yi),

where L : C(Rd)× Rd × RNL → R+ is the loss function (in least
squares problems we have L(f, x, y) = |f(x)− y|2).

Regression/Classification with Neural Networks

Neural Network Hypothesis Class

Given d, L,N1, . . . , NL and σ define the associated hypothesis class

H[d,N1,...,NL],σ :={
ALσ (AL−1σ (. . . σ (A1(x)))) : A` : RN`−1 → RN` affine linear

}
.

Typical Regression/Classification Task

Given data z = ((xi, yi))
m
i=1 ⊂ Rd × RNL , find the empirical

regression function

fz ∈ argminf∈H[d,N1,...,NL],σ

m∑
i=1

L(f, xi, yi),

where L : C(Rd)× Rd × RNL → R+ is the loss function (in least
squares problems we have L(f, x, y) = |f(x)− y|2).

Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???
Non-linear, non-convex

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???
Non-linear, non-convex

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???
Non-linear, non-convex

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???
Non-linear, non-convex

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???

Non-linear, non-convex

Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi, yi)

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

???how???
Non-linear, non-convex

Gradient Descent: The Simplest Optimization Method

Gradient Descent

Gradient of F : RN → R is
defined by

∇F (u) =

(
∂F (u)

∂(u)1
, . . . ,

∂F (u)

∂(u)N

)T
.

Gradient descent with stepsize
η > 0 is defined by

un+1 ← un − η∇F (un).

Converges (slowly) to
stationary point of F .

Gradient Descent: The Simplest Optimization Method

Gradient Descent

Gradient of F : RN → R is
defined by

∇F (u) =

(
∂F (u)

∂(u)1
, . . . ,

∂F (u)

∂(u)N

)T
.

Gradient descent with stepsize
η > 0 is defined by

un+1 ← un − η∇F (un).

Converges (slowly) to
stationary point of F .

Gradient Descent: The Simplest Optimization Method

Gradient Descent

Gradient of F : RN → R is
defined by

∇F (u) =

(
∂F (u)

∂(u)1
, . . . ,

∂F (u)

∂(u)N

)T
.

Gradient descent with stepsize
η > 0 is defined by

un+1 ← un − η∇F (un).

Converges (slowly) to
stationary point of F .

Gradient Descent: The Simplest Optimization Method

Gradient Descent

Gradient of F : RN → R is
defined by

∇F (u) =

(
∂F (u)

∂(u)1
, . . . ,

∂F (u)

∂(u)N

)T
.

Gradient descent with stepsize
η > 0 is defined by

un+1 ← un − η∇F (un).

Converges (slowly) to
stationary point of F .

Backprop

In our problem: F =
∑m

i=1 L(f, xi, yi) and u = ((W`, b`))
L
`=1.

Since ∇((W`,b`))
L
`=1
F =

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi), we need to

determine (for x, y ∈ Rd × RNL fixed)

∂L(f, x, y)

∂(W`)i,j
,
∂L(f, x, y)

∂(b`)i
, ` = 1, . . . , L.

Skip Derivation

For simplicity suppose that L(f, x, y) = (f(x)− y)2, so that

∂L(f, x, y)

∂(W`)i,j
= 2 · (f(x)− y)T · ∂f(x)

∂(W`)i,j
,

∂L(f, x, y)

∂(b`)i
= 2 · (f(x)− y)T · ∂f(x)

∂(b`)i
.

Backprop

In our problem: F =
∑m

i=1 L(f, xi, yi) and u = ((W`, b`))
L
`=1.

Since ∇((W`,b`))
L
`=1
F =

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi), we need to

determine (for x, y ∈ Rd × RNL fixed)

∂L(f, x, y)

∂(W`)i,j
,
∂L(f, x, y)

∂(b`)i
, ` = 1, . . . , L.

Skip Derivation

For simplicity suppose that L(f, x, y) = (f(x)− y)2, so that

∂L(f, x, y)

∂(W`)i,j
= 2 · (f(x)− y)T · ∂f(x)

∂(W`)i,j
,

∂L(f, x, y)

∂(b`)i
= 2 · (f(x)− y)T · ∂f(x)

∂(b`)i
.

Backprop

In our problem: F =
∑m

i=1 L(f, xi, yi) and u = ((W`, b`))
L
`=1.

Since ∇((W`,b`))
L
`=1
F =

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi), we need to

determine (for x, y ∈ Rd × RNL fixed)

∂L(f, x, y)

∂(W`)i,j
,
∂L(f, x, y)

∂(b`)i
, ` = 1, . . . , L.

Skip Derivation

For simplicity suppose that L(f, x, y) = (f(x)− y)2, so that

∂L(f, x, y)

∂(W`)i,j
= 2 · (f(x)− y)T · ∂f(x)

∂(W`)i,j
,

∂L(f, x, y)

∂(b`)i
= 2 · (f(x)− y)T · ∂f(x)

∂(b`)i
.

x =
(
(x)1
(x)2

)

a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=

∂
∂(W3)1,2

((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)
∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=

∂
∂(W3)1,2

((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

x =
(
(x)1
(x)2

)
a1 = σ(z1)

= σ(W1x+ b1)

W1 =

(W1)1,1(W1)1,2
(W1)2,1(W1)2,2
(W1)3,1(W1)3,2


b1 =

(b1)1
(b1)2
(b1)3



a2 = σ(z2)

= σ(W2a1 + b2)

W2 =

(W2)1,1(W2)1,2(W2)1,3
(W2)2,1(W2)2,2(W2)2,3
(W2)3,1(W2)3,2(W2)3,3


b2 =

(b2)1
(b2)2
(b2)3



Φ(x) = z3

= W3a2 + b3

W3 =

(
(W3)1,1(W3)1,2(W3)1,3
(W3)2,1(W3)2,2(W3)2,3

)

b3 =

(
(b3)1
(b3)2

)

∂(z3)1
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)1,1(a2)1 + (W3)1,2(a2)2 + (W3)1,3(a2)3)

= (a2)2

∂(z3)2
∂(W3)1,2

=
∂

∂(W3)1,2
((W3)2,1(a2)1 + (W3)2,2(a2)2 + (W3)2,3(a2)3)

= 0

∂(z3)k
∂(W3)i,j=

{
(a2)j i = k

0 i 6= k

∂(z3)k
∂(b3)i

=

{
1 i = k
0 i 6= k

∂Φ(x)
∂W3

=

((a2)1
0

)(
(a2)2

0

)(
(a2)3

0

)(
0

(a2)1

)(
0

(a2)2

)(
0

(a2)3

)

∂Φ(x)
∂b3

=

(1
0

)(
0
1

)

Backprop: Last Layer

∂L(f,x,y)
∂(WL)i,j

= 2 · (f(x)− y)T · ∂f(x)
∂(WL)i,j

,
∂L(f,x,y)
∂(bL)i

= 2 · (f(x)− y)T · ∂f(x)∂(bL)i
.

Let f(x) = WLσ(WL−1(. . .) + bL−1) + bL. It follows that
∂f(x)

∂(WL)i,j
= (0, . . . , σ(WL−1(. . .) + bL−1)j︸ ︷︷ ︸

i

, . . . , 0)T

∂f(x)
∂(bL)i

= (0, . . . , 1︸︷︷︸
i

, . . . , 0)T

2(f(x)− y)T ∂f(x)
∂(WL)i,j

= 2(f(x)− y)iσ(WL−1(. . .) + bL−1)j ,

2(f(x)− y)T ∂f(x)
∂(bL)i

= 2(f(x)− y)i

In matrix notation:

∂L(f,x,y)
∂WL

= 2(f(x)− y)︸ ︷︷ ︸
δL

(σ(

zL−1︷ ︸︸ ︷
WL−1(. . .) + bL−1)︸ ︷︷ ︸

aL−1

)T ,

∂L(f,x,y)
∂bL

= 2(f(x)− y).

Backprop: Last Layer

∂L(f,x,y)
∂(WL)i,j

= 2 · (f(x)− y)T · ∂f(x)
∂(WL)i,j

,
∂L(f,x,y)
∂(bL)i

= 2 · (f(x)− y)T · ∂f(x)∂(bL)i
.

Let f(x) = WLσ(WL−1(. . .) + bL−1) + bL. It follows that
∂f(x)

∂(WL)i,j
= (0, . . . , σ(WL−1(. . .) + bL−1)j︸ ︷︷ ︸

i

, . . . , 0)T

∂f(x)
∂(bL)i

= (0, . . . , 1︸︷︷︸
i

, . . . , 0)T

2(f(x)− y)T ∂f(x)
∂(WL)i,j

= 2(f(x)− y)iσ(WL−1(. . .) + bL−1)j ,

2(f(x)− y)T ∂f(x)
∂(bL)i

= 2(f(x)− y)i

In matrix notation:

∂L(f,x,y)
∂WL

= 2(f(x)− y)︸ ︷︷ ︸
δL

(σ(

zL−1︷ ︸︸ ︷
WL−1(. . .) + bL−1)︸ ︷︷ ︸

aL−1

)T ,

∂L(f,x,y)
∂bL

= 2(f(x)− y).

Backprop: Last Layer

∂L(f,x,y)
∂(WL)i,j

= 2 · (f(x)− y)T · ∂f(x)
∂(WL)i,j

,
∂L(f,x,y)
∂(bL)i

= 2 · (f(x)− y)T · ∂f(x)∂(bL)i
.

Let f(x) = WLσ(WL−1(. . .) + bL−1) + bL. It follows that
∂f(x)

∂(WL)i,j
= (0, . . . , σ(WL−1(. . .) + bL−1)j︸ ︷︷ ︸

i

, . . . , 0)T

∂f(x)
∂(bL)i

= (0, . . . , 1︸︷︷︸
i

, . . . , 0)T

2(f(x)− y)T ∂f(x)
∂(WL)i,j

= 2(f(x)− y)iσ(WL−1(. . .) + bL−1)j ,

2(f(x)− y)T ∂f(x)
∂(bL)i

= 2(f(x)− y)i

In matrix notation:

∂L(f,x,y)
∂WL

= 2(f(x)− y)︸ ︷︷ ︸
δL

(σ(

zL−1︷ ︸︸ ︷
WL−1(. . .) + bL−1)︸ ︷︷ ︸

aL−1

)T ,

∂L(f,x,y)
∂bL

= 2(f(x)− y).

Backprop: Last Layer

∂L(f,x,y)
∂(WL)i,j

= 2 · (f(x)− y)T · ∂f(x)
∂(WL)i,j

,
∂L(f,x,y)
∂(bL)i

= 2 · (f(x)− y)T · ∂f(x)∂(bL)i
.

Let f(x) = WLσ(WL−1(. . .) + bL−1) + bL. It follows that
∂f(x)

∂(WL)i,j
= (0, . . . , σ(WL−1(. . .) + bL−1)j︸ ︷︷ ︸

i

, . . . , 0)T

∂f(x)
∂(bL)i

= (0, . . . , 1︸︷︷︸
i

, . . . , 0)T

2(f(x)− y)T ∂f(x)
∂(WL)i,j

= 2(f(x)− y)iσ(WL−1(. . .) + bL−1)j ,

2(f(x)− y)T ∂f(x)
∂(bL)i

= 2(f(x)− y)i

In matrix notation:

∂L(f,x,y)
∂WL

= 2(f(x)− y)︸ ︷︷ ︸
δL

(σ(

zL−1︷ ︸︸ ︷
WL−1(. . .) + bL−1)︸ ︷︷ ︸

aL−1

)T ,

∂L(f,x,y)
∂bL

= 2(f(x)− y).

Backprop: Last Layer

∂L(f,x,y)
∂(WL)i,j

= 2 · (f(x)− y)T · ∂f(x)
∂(WL)i,j

,
∂L(f,x,y)
∂(bL)i

= 2 · (f(x)− y)T · ∂f(x)∂(bL)i
.

Let f(x) = WLσ(WL−1(. . .) + bL−1) + bL. It follows that
∂f(x)

∂(WL)i,j
= (0, . . . , σ(WL−1(. . .) + bL−1)j︸ ︷︷ ︸

i

, . . . , 0)T

∂f(x)
∂(bL)i

= (0, . . . , 1︸︷︷︸
i

, . . . , 0)T

2(f(x)− y)T ∂f(x)
∂(WL)i,j

= 2(f(x)− y)iσ(WL−1(. . .) + bL−1)j ,

2(f(x)− y)T ∂f(x)
∂(bL)i

= 2(f(x)− y)i

In matrix notation:

∂L(f,x,y)
∂WL

= 2(f(x)− y)︸ ︷︷ ︸
δL

(σ(

zL−1︷ ︸︸ ︷
WL−1(. . .) + bL−1)︸ ︷︷ ︸

aL−1

)T ,

∂L(f,x,y)
∂bL

= 2(f(x)− y).

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

Backprop: Second-to-last Layer

Define a`+1 = σ(z`+1) where z`+1 = W`+1a` + b`+1, a0 = x,
f(x) = zL.

We have computed L(f,x,y)∂WL
, L(F,x,y)∂bL

Then, use chain rule:

∂L(f, x, y)

∂WL−1
=
∂L(f, x, y)

aL−1
· ∂aL−1
∂WL−1

= 2(f(x)−y)T ·WL ·
∂aL−1
∂WL−1

.

= 2(f(x)− y)T ·WL · diag(σ′(zL−1)) · ∂zL−1

∂WL−1

same as
before!

= diag(σ′(zL−1)) ·W T
L · 2(f(x)− y)︸ ︷︷ ︸

δL−1

·aTL−2.

Similar arguments yield ∂L(f,x,y)
∂bL−1

= δL−1.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

The Backprop Algorithm

1 Calculate a` = σ(z`), z` = A`(a`−1) for ` = 1, . . . , L, a0 = x
(forward pass).

2 Set δL = 2(f(x)− y)

3 Then ∂L(f,x,y)
∂bL

= δL and ∂L(f,x,y)
∂WL

= δL · aTL−1.

4 for ` from L− 1 to 1 do:

δ` = diag(σ′(z`)) ·WT
`+1 · δ`+1

Then ∂L(f,x,y)
∂b`

= δ` and ∂L(f,x,y)
∂W`

= δ` · aT`−1.

5 return ∂L(f,x,y)
∂b`

, ∂L(f,x,y)
∂W`

, l = 1, . . . , L.

Computational Graphs

Automatic Differentiation

4 Stochastic Gradient Descent

The Complexity of Gradient Descent

Recall that one gradient descent step requires the calculation of

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi).

and each of the summands requires one backpropagation run.

Thus, the total complexity of one gradient descent step is equal to

m · complexity(backprop).

The complexity of backprop is asymptotically equal to the number of
DOFs of the network:

complexity(backprop) ∼
L∑
`=1

N`−1 ×N` +N`.

The Complexity of Gradient Descent

Recall that one gradient descent step requires the calculation of

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi).

and each of the summands requires one backpropagation run.
Thus, the total complexity of one gradient descent step is equal to

m · complexity(backprop).

The complexity of backprop is asymptotically equal to the number of
DOFs of the network:

complexity(backprop) ∼
L∑
`=1

N`−1 ×N` +N`.

The Complexity of Gradient Descent

Recall that one gradient descent step requires the calculation of

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi).

and each of the summands requires one backpropagation run.
Thus, the total complexity of one gradient descent step is equal to

m · complexity(backprop).

The complexity of backprop is asymptotically equal to the number of
DOFs of the network:

complexity(backprop) ∼
L∑
`=1

N`−1 ×N` +N`.

An Example

ImageNet database consists of ∼ 1.2m images and 1000
categories.

AlexNet, neural network with ∼
160m DOFs is one of the most suc-
cessful annotation methods

One step of gradient descent requires ∼ 2 ∗ 1014 flops (and memory
units)!!

An Example

ImageNet database consists of ∼ 1.2m images and 1000
categories.

AlexNet, neural network with ∼
160m DOFs is one of the most suc-
cessful annotation methods

One step of gradient descent requires ∼ 2 ∗ 1014 flops (and memory
units)!!

An Example

ImageNet database consists of ∼ 1.2m images and 1000
categories.

AlexNet, neural network with ∼
160m DOFs is one of the most suc-
cessful annotation methods

One step of gradient descent requires ∼ 2 ∗ 1014 flops (and memory
units)!!

An Example

ImageNet database consists of ∼ 1.2m images and 1000
categories.

AlexNet, neural network with ∼
160m DOFs is one of the most suc-
cessful annotation methods

One step of gradient descent requires ∼ 2 ∗ 1014 flops (and memory
units)!!

Stochastic Gradient Descent (SGD)

Approximate

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi)

by
∇((W`,b`))

L
`=1
L(f, xi∗ , yi∗)

for some i∗ chosen uniformly at random from {1, . . . ,m}.

In expectation we have

E∇((W`,b`))
L
`=1
L(f, xi∗ , yi∗) =

1

m

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi)

Stochastic Gradient Descent (SGD)

Approximate

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi)

by
∇((W`,b`))

L
`=1
L(f, xi∗ , yi∗)

for some i∗ chosen uniformly at random from {1, . . . ,m}.

In expectation we have

E∇((W`,b`))
L
`=1
L(f, xi∗ , yi∗) =

1

m

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi)

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random

update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

The SGD Algorithm

Goal: Find stationary point of function F =
∑m

i=1 Fi : RN → R.

1 Set starting value u0 and n = 0

2 while (error is large) do:

Pick i ∈ {1, . . . ,m} uniformly at random
update un+1 = un − η∇Fi∗

n = n+ 1

3 return un

Typical Behavior

Figure: Comparison btw. GD and SGD. m steps of SGD are counted as one
iteration.

Initially very fast convergence, followed by stagnation!

Typical Behavior

Figure: Comparison btw. GD and SGD. m steps of SGD are counted as one
iteration.

Initially very fast convergence, followed by stagnation!

Minibatch SGD

For every {i∗1, . . . , i∗K} ⊂ {1, . . . ,m} chosen uniformly at
random, it holds that

E
1

K

k∑
l=1

∇((W`,b`))
L
`=1
L(f, xi∗l , yi

∗
l
) =

1

m

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi),

e.g., we have an unbiased estimator for the gradient.

K = 1 SGD

K > 1 Minibatch SGD with batchsize K.

Minibatch SGD

For every {i∗1, . . . , i∗K} ⊂ {1, . . . ,m} chosen uniformly at
random, it holds that

E
1

K

k∑
l=1

∇((W`,b`))
L
`=1
L(f, xi∗l , yi

∗
l
) =

1

m

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi),

e.g., we have an unbiased estimator for the gradient.

K = 1 SGD

K > 1 Minibatch SGD with batchsize K.

Minibatch SGD

For every {i∗1, . . . , i∗K} ⊂ {1, . . . ,m} chosen uniformly at
random, it holds that

E
1

K

k∑
l=1

∇((W`,b`))
L
`=1
L(f, xi∗l , yi

∗
l
) =

1

m

m∑
i=1

∇((W`,b`))
L
`=1
L(f, xi, yi),

e.g., we have an unbiased estimator for the gradient.

K = 1 SGD

K > 1 Minibatch SGD with batchsize K.

Some Heuristics

The sample mean 1
K

∑k
l=1∇((W`,b`))

L
`=1
L(f, xi∗l , yi

∗
l
) is itself a

random variable that has expected value
1
m

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi).

In order to assess the deviation of the sample mean from its
expected value we may compute its standard deviation σ/

√
n

where σ is the standard deviation of
i 7→ ∇((W`,b`))

L
`=1
L(f, xi, yi).

Increasing the batch size by a factor 100 yields an improvement of the
variance by a factor 10 while the complexity increases by a factor 100!

Common batchsize for large models: K = 16, 32.

Some Heuristics

The sample mean 1
K

∑k
l=1∇((W`,b`))

L
`=1
L(f, xi∗l , yi

∗
l
) is itself a

random variable that has expected value
1
m

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi).

In order to assess the deviation of the sample mean from its
expected value we may compute its standard deviation σ/

√
n

where σ is the standard deviation of
i 7→ ∇((W`,b`))

L
`=1
L(f, xi, yi).

Increasing the batch size by a factor 100 yields an improvement of the
variance by a factor 10 while the complexity increases by a factor 100!

Common batchsize for large models: K = 16, 32.

Some Heuristics

The sample mean 1
K

∑k
l=1∇((W`,b`))

L
`=1
L(f, xi∗l , yi

∗
l
) is itself a

random variable that has expected value
1
m

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi).

In order to assess the deviation of the sample mean from its
expected value we may compute its standard deviation σ/

√
n

where σ is the standard deviation of
i 7→ ∇((W`,b`))

L
`=1
L(f, xi, yi).

Increasing the batch size by a factor 100 yields an improvement of the
variance by a factor 10 while the complexity increases by a factor 100!

Common batchsize for large models: K = 16, 32.

Some Heuristics

The sample mean 1
K

∑k
l=1∇((W`,b`))

L
`=1
L(f, xi∗l , yi

∗
l
) is itself a

random variable that has expected value
1
m

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi).

In order to assess the deviation of the sample mean from its
expected value we may compute its standard deviation σ/

√
n

where σ is the standard deviation of
i 7→ ∇((W`,b`))

L
`=1
L(f, xi, yi).

Increasing the batch size by a factor 100 yields an improvement of the
variance by a factor 10 while the complexity increases by a factor 100!

Common batchsize for large models: K = 16, 32.

Some Heuristics

The sample mean 1
K

∑k
l=1∇((W`,b`))

L
`=1
L(f, xi∗l , yi

∗
l
) is itself a

random variable that has expected value
1
m

∑m
i=1∇((W`,b`))

L
`=1
L(f, xi, yi).

In order to assess the deviation of the sample mean from its
expected value we may compute its standard deviation σ/

√
n

where σ is the standard deviation of
i 7→ ∇((W`,b`))

L
`=1
L(f, xi, yi).

Increasing the batch size by a factor 100 yields an improvement of the
variance by a factor 10 while the complexity increases by a factor 100!

Common batchsize for large models: K = 16, 32.

5 The Basic Recipe

The basic Neural Network Recipe for Learning

1 Neuro-inspired model

2 Backprop

3 Minibatch SGD

Now let’s try classifying handwritten digits!

The basic Neural Network Recipe for Learning

1 Neuro-inspired model

2 Backprop

3 Minibatch SGD

Now let’s try classifying handwritten digits!

The basic Neural Network Recipe for Learning

1 Neuro-inspired model

2 Backprop

3 Minibatch SGD

Now let’s try classifying handwritten digits!

The basic Neural Network Recipe for Learning

1 Neuro-inspired model

2 Backprop

3 Minibatch SGD

Now let’s try classifying handwritten digits!

The basic Neural Network Recipe for Learning

1 Neuro-inspired model

2 Backprop

3 Minibatch SGD

Now let’s try classifying handwritten digits!

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10].

Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10].

Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10].

Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

Results

MNIST dataset, 30 epochs, learning rate η = 3.0, minibatch size
K = 10, training set size m = 50000, test set size = 10000.

network size [784, 30, 10]. Classification accuracy 94.84%.

network size [784, 30, 30, 10]. Classification accuracy 95.81%.

network size [784, 30, 30, 30, 10]. Classification accuracy 95.07%.

Deep learning might not help after all...

6 Going Deep (?)

Problems with Deep Networks

Overfitting (as usual...)

Vanishing/Exploding Gradient Problem

Problems with Deep Networks

Overfitting (as usual...)

Vanishing/Exploding Gradient Problem

Problems with Deep Networks

Overfitting (as usual...)

Vanishing/Exploding Gradient Problem

Dealing with Overfitting: Regularization

Rather than minimizing

m∑
i=1

L(f, xi, yi),

minimize
m∑
i=1

L(f, xi, yi) + λΩ((W`)
L
`=1),

for example

Ω((W`)
L
`=1) =

∑
l,i,j

|(W`)i,j |p.

Gradient update has to be augmented by

λ · ∂

∂(W`)i,j
Ω((W`)

L
`=1) = λ · p · |(W`)i,j |p−1 · sgn((W`)i,j)

Dealing with Overfitting: Regularization

Rather than minimizing

m∑
i=1

L(f, xi, yi),

minimize
m∑
i=1

L(f, xi, yi) + λΩ((W`)
L
`=1),

for example

Ω((W`)
L
`=1) =

∑
l,i,j

|(W`)i,j |p.

Gradient update has to be augmented by

λ · ∂

∂(W`)i,j
Ω((W`)

L
`=1) = λ · p · |(W`)i,j |p−1 · sgn((W`)i,j)

Sparsity-Promoting Regularization

Since
lim
p→0

∑
l,i,j

|(W`)i,j |p = #nonzero weights,

regularization with p ≤ 1 promotes sparse connectivity (and hence
small memory requirements)!

Sparsity-Promoting Regularization

Since
lim
p→0

∑
l,i,j

|(W`)i,j |p = #nonzero weights,

regularization with p ≤ 1 promotes sparse connectivity (and hence
small memory requirements)!

Dropout

During each feedforward/back-
prop step drop nodes with proba-
bility p.

After training, multiply all weights
with p.

Final output is “average”
over many sparse network models.

Dropout

During each feedforward/back-
prop step drop nodes with proba-
bility p.

After training, multiply all weights
with p.

Final output is “average”
over many sparse network models.

Dropout

During each feedforward/back-
prop step drop nodes with proba-
bility p.

After training, multiply all weights
with p.

Final output is “average”
over many sparse network models.

Dropout

During each feedforward/back-
prop step drop nodes with proba-
bility p.

After training, multiply all weights
with p.

Final output is “average”
over many sparse network models.

Dataset Augmentation

Use invariances in dataset to generate more data!

Sometimes also noise is added to the weights to favour ‘robust’
stationary points.

Dataset Augmentation

Use invariances in dataset to generate more data!

Sometimes also noise is added to the weights to favour ‘robust’
stationary points.

Dataset Augmentation

Use invariances in dataset to generate more data!

Sometimes also noise is added to the weights to favour ‘robust’
stationary points.

Dataset Augmentation

Use invariances in dataset to generate more data!

Sometimes also noise is added to the weights to favour ‘robust’
stationary points.

Dataset Augmentation

Use invariances in dataset to generate more data!

Sometimes also noise is added to the weights to favour ‘robust’
stationary points.

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning.

Is depth a nuisance!?

The Vanishing Gradient Problem

Figure: “Extremely Deep” Network

Φ(x) = w5σ(w4σ(w3σ(w2σ(w1x+ b1) + b2) + b3) + b4) + b5

∂Φ(x)

∂b1
=

L∏
`=2

w` ·
L−1∏
`=1

σ′(z`)

If σ(x) = 1
1+e−x , it holds that |σ′(x)| ≤ 2 · e−|x|, and thus

|∂Φ(x)

∂b1
| ≤ 2 ·

L∏
`=2

|w`| · e−
∑L−1
`=1 |z`|

bottom layers will learn much slower than top layers and not
contribute to learning. Is depth a nuisance!?

Dealing with the Vanishing Gradient Problem

Use activation function with ‘large’ gradient.

ReLU

The Rectified Linear Unit is defined as

ReLU(x) :=

{
x x > 0
0 else

Dealing with the Vanishing Gradient Problem

Use activation function with ‘large’ gradient.

ReLU

The Rectified Linear Unit is defined as

ReLU(x) :=

{
x x > 0
0 else

Dealing with the Vanishing Gradient Problem

Use activation function with ‘large’ gradient.

ReLU

The Rectified Linear Unit is defined as

ReLU(x) :=

{
x x > 0
0 else

7 Convolutional Neural Networks

Is there a cat in this image?

Is there a cat in this image?

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection)

C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection)

C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection)

C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection)

C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection)

C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection) C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Suppose we have a ‘cat-filter’ W

w31 w32 w33

w21 w22 w23

w11 w12 w13

(Cat-Selection) C-S Inequality

For any

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 we

have

X ·W ≤ (X ·X)1/2(W ·W)1/2

with equality if and only if X is
parallel to a cat.

perform cat-test on all 3× 3 image subpatches!

Convolution

Definition

Suppose that X,Y ∈ Rn×n. Then Z = X ∗ Y ∈ Rn×n is defined as

Z[i, j] =

n−1∑
k,l=0

X[i− k, j − l]Y [k, l],

where periodization or zero-padding of X,Y is used if i− k or j − l is
not in {0, . . . , n− 1}.

Efficient computation possible via FFT (or directly if X or Y
are sparse)!

Convolution

Definition

Suppose that X,Y ∈ Rn×n. Then Z = X ∗ Y ∈ Rn×n is defined as

Z[i, j] =

n−1∑
k,l=0

X[i− k, j − l]Y [k, l],

where periodization or zero-padding of X,Y is used if i− k or j − l is
not in {0, . . . , n− 1}.

Efficient computation possible via FFT (or directly if X or Y
are sparse)!

Example: Detecting Vertical Edges

Given ‘vertical-edge-detection-filter’ W =

 −1 2 −1
−1 2 −1
−1 2 −1



Example: Detecting Vertical Edges

Given ‘vertical-edge-detection-filter’ W =

 −1 2 −1
−1 2 −1
−1 2 −1



Example: Detecting Vertical Edges

∗ =

Example: Detecting Vertical Edges

∗

=

Example: Detecting Vertical Edges

∗ =

Example: Detecting Vertical Edges

∗ =

Introducing Convolutional Nodes

A convolutional node accepts as input a stack of images, e.g.
X ∈ Rn1×n2×S .

Given a filter W ∈ RF×F×S , where F is the spatial extent and a
bias b ∈ R, it computes a matrix

Z = W ∗12 X :=

S∑
i=1

X[:, :, i] ∗W [:, :, i] + b.

Introducing Convolutional Nodes

A convolutional node accepts as input a stack of images, e.g.
X ∈ Rn1×n2×S .

Given a filter W ∈ RF×F×S , where F is the spatial extent and a
bias b ∈ R, it computes a matrix

Z = W ∗12 X :=

S∑
i=1

X[:, :, i] ∗W [:, :, i] + b.

Introducing Convolutional Nodes

A convolutional node accepts as input a stack of images, e.g.
X ∈ Rn1×n2×S .
Given a filter W ∈ RF×F×S , where F is the spatial extent and a
bias b ∈ R, it computes a matrix

Z = W ∗12 X :=

S∑
i=1

X[:, :, i] ∗W [:, :, i] + b.

Introducing Convolutional Layers

A convolutional node accepts as input a stack of images, e.g.
X ∈ Rn1×n2×S .

Given a filter W ∈ RF×F×S , where F is the spatial extent and a
bias b ∈ R, it computes a matrix

Z = W ∗12 X :=

S∑
i=1

X[:, :, i] ∗W [:, :, i] + b.

A convolutional layer consists of K convolutional nodes
((Wi, bi))

K
i=1 ⊂ RF×F×S × R and produces as output a stack

Z ∈ Rn1×n2×K via

Z[:, :, i] = Wi ∗12 X + bi.

A convolutional layer can be written as a conventional neural
network layer!

Introducing Convolutional Layers

A convolutional node accepts as input a stack of images, e.g.
X ∈ Rn1×n2×S .

Given a filter W ∈ RF×F×S , where F is the spatial extent and a
bias b ∈ R, it computes a matrix

Z = W ∗12 X :=

S∑
i=1

X[:, :, i] ∗W [:, :, i] + b.

A convolutional layer consists of K convolutional nodes
((Wi, bi))

K
i=1 ⊂ RF×F×S × R and produces as output a stack

Z ∈ Rn1×n2×K via

Z[:, :, i] = Wi ∗12 X + bi.

A convolutional layer can be written as a conventional neural
network layer!

Activation Layers

The activation layer is defined in the same way as before, e.g.,
Z ∈ Rn1×n2×K is mapped to

A = ReLU(Z)

where ReLU is applied component-wise.

Pooling Layers

Reduce dimensionality after filtering.

Definition

A pooling operator R acts layer-wise on a tensor X ∈ Rn1×n2×S to
result in a tensor R(X) ∈ Rm1×m2×S , where m1 < n1 and m2 < n2.

Downsampling

Max-pooling

Pooling Layers

Reduce dimensionality after filtering.

Definition

A pooling operator R acts layer-wise on a tensor X ∈ Rn1×n2×S to
result in a tensor R(X) ∈ Rm1×m2×S , where m1 < n1 and m2 < n2.

Downsampling

Max-pooling

Pooling Layers

Reduce dimensionality after filtering.

Definition

A pooling operator R acts layer-wise on a tensor X ∈ Rn1×n2×S to
result in a tensor R(X) ∈ Rm1×m2×S , where m1 < n1 and m2 < n2.

Downsampling

Max-pooling

Pooling Layers

Reduce dimensionality after filtering.

Definition

A pooling operator R acts layer-wise on a tensor X ∈ Rn1×n2×S to
result in a tensor R(X) ∈ Rm1×m2×S , where m1 < n1 and m2 < n2.

Downsampling

Max-pooling

Convolutional Neural Networks (CNNs)

Definition

A CNN with L layers consists of L iterative applications of a
convolutional layer, followed by an activation layer, (possibly)
followed by a pooling layer.

Typical architectures consist of a CNN (as a feature extractor),
followed by a fully connected NN (as a classifier)

Figure: LeNet (1998, LeCun etal): the first successful CNN architecture,
used for reading handwritten digits

Convolutional Neural Networks (CNNs)

Definition

A CNN with L layers consists of L iterative applications of a
convolutional layer, followed by an activation layer, (possibly)
followed by a pooling layer.

Typical architectures consist of a CNN (as a feature extractor),
followed by a fully connected NN (as a classifier)

Figure: LeNet (1998, LeCun etal): the first successful CNN architecture,
used for reading handwritten digits

Convolutional Neural Networks (CNNs)

Definition

A CNN with L layers consists of L iterative applications of a
convolutional layer, followed by an activation layer, (possibly)
followed by a pooling layer.

Typical architectures consist of a CNN (as a feature extractor),
followed by a fully connected NN (as a classifier)

Figure: LeNet (1998, LeCun etal): the first successful CNN architecture,
used for reading handwritten digits

Feature Extractor vs. Classifier

Feature Extractor vs. Classifier

D. Trump

B. Sanders

B. Johnson

A. Merkel

Feature Extractor vs. Classifier

D. Trump

B. Sanders

B. Johnson

A. Merkel

Python Library Tensor Flow,
developed by Google Brain, based
on symbolic computational graphs
www.tensorflow.org.

www.tensorflow.org

Python Library Tensor Flow,
developed by Google Brain, based
on symbolic computational graphs
www.tensorflow.org.

www.tensorflow.org

Python Library Tensor Flow,
developed by Google Brain, based
on symbolic computational graphs
www.tensorflow.org.

www.tensorflow.org

8 What I didn’t tell you

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

1 Data structures & algorithms for efficient deep learning
(computational graphs, automatic differentiation, adaptive
learning rate, hardware, ...)

2 Things to do besides regression or classification

3 Finetuning (choice of activation function, choice of loss function,
...)

4 More sophisticated training procedures for feature extractor
layers (Autoencoder, Restricted Boltzmann Machines, ...)

5 Recurrent Neural Networks

Questions?

