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Natural Language Processing

• Natural Language Processing (NLP) is a research field at the intersection of
• computer science
• artificial intelligence
• linguistics

• Goal is to process and understand natural Language in order to perform tasks that
are useful, e.g.

• Syntax checking
• Language translation
• Personal assistant (Siri, Google Assistant, Jarvis, Cortana, …)

• Note: Fully understanding and representing the meaning of language is a difficult
goal and is expected to be AI-complete.
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Natural Language Processing

Discourse Processing

Semantic interpretation

Syntactic analysis

Morphological analysis

Phonetic/Phonological Analysis OCR/Tokenization

speech text
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Natural Language Processing

• Applications of the NLP in a real life
• Spell checking, keyword search, synonyms finding
• Important data extraction from text (security codes, product prices, location, named
entity, etc.)

• Classification of content
• Sentiment analysis
• Topic extraction, topic evolution
• Authorship identification, plagiarism detection
• Machine translation
• Dialog systems
• Question answering system
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Human Language Properties

• A human language is a system designed to transfer the
meaning from speaker/writer to listener/reader.

• A human language uses an encoding that is simple for
child to quickly learn and which changes during time.

• A human language is mostly
discrete/symbolic/categorical signaling system.

• Sounds
• Gesture
• Writing
• Images

• The symbols are invariant across different encodings.
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Deep learning in NLP - History

• Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech
Recognition, Dahl et. al. 2012

• A combined model of Hidden Markov Model, Deep Neural networks and Context
dependency

• Optimization on the GPU
• Error reduction achieved is 32% with respect to traditional approaches.

• ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky,
Sutskever, & Hinton, 2012

• A model consist of Rectified Linear Units and Deep Convolution Networks.
• Optimization on the GPU
• Error reduction achieved is 37% with respect to traditional approaches.
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Deep learning in NLP - Motivation

• NLP is HARD
• Complexity in representation, learning and using
linguistic/situation/contextual/word/visual knowledge.

• Human languages are ambiguous:

• I made her duck
• I cooked waterfowl for her benefit (to eat)
• I cooked waterfowl belonging to her
• I created the (plaster?) duck she owns
• I caused her to quickly lower her head or body
• I waved my magic wand and turned her into undifferentiated waterfowl

• Deep models are know to be able to learn complex models
• The amount of data is huge as well as the amount of computational power
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Deep learning in NLP - Applications

• Combination of Deep Learning with the goals and ideas of NLP

• Word similarities is a task to compute similarity between words to discover
similarities without guiding (unsupervised learning)

• Morphology reconstruction and representation for improvement of word similarities.
• Sentence structure parsing for precise grammatical structure identification.
• Machine translation now live in Google Translate, Question Answering system live in
Google Assistant, Siri, etc.
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Representation of the meaning of a word

• The meaning means:
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

• A WordNet is a great resource of meaning:
• A complex network of words made by human.
• A list of synonyms, hypernyms (generalization), antonyms, etc.
• A word category with dictionary-like description of a meaning.
• A new meaning are missing in a database.
• Some meaning and synonyms are valid only in some contexts.
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Representation of the meaning of a word

• The standard representation is called one-hot vector.

motel = [00000000100]
hotel = [00000100000]

• Vector dimension = number of word in a corpus
• Vectors are orthogonal motel · hotel = 0
• Similarity cannot be defined on one/hot vector representation.
• WordNet may be used to extract synonyms for each word that will be used as
similarity function, but ist too complicated approach.
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Representation of the meaning of a word

A word’s meaning is given by the words that frequently appear close-by

• When a word apears in the text, its context is set by the words that appear nearby
(usually withing a fixed window).

• Many context windows for each word are used for representation of the word.

Example:

…reasonable and to prevent the network trips from swamping out the execution…
…distance between nodes; network traffic or bandwidth constraints; …
…beyond your control (i.e. network outage, hardware failure) or the latency …

…experience was a temporarily-high network load which caused a timeout…
…is removed (i.e. temporary network disconnection resolved) then …

…see their involvement with the network and its digital properties expand …
…but cant get mobile network connection to work. Basically …
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Word2vec framework

Word2vec is a framework for learning word vectors.

• We have a large corpus of text.
• Every word in a fixed vocabulary is represented by a vector.
• Go through each position t in the text, which has a center word c and context words o.
• Use the similarity of the word vectors for c and o to calculate the probability of o
given c.

• Keep adjusting the word vectors to maximize the probability.
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Word2vec framework

Example window and process of computing

… problems turning into banking crisis as was …

into

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

banking

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

crisis

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

13



Word2vec framework

Example window and process of computing

… problems turning into banking crisis as was …into

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

banking

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

crisis

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

13



Word2vec framework

Example window and process of computing

… problems turning into banking crisis as was …

into

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

banking

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

crisis

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

13



Word2vec framework

Example window and process of computing

… problems turning into banking crisis as was …

into

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

banking

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

crisis

P(wt−1|wt) P(wt+1|wt)

P(wt−2|wt) P(wt+2|wt)

13



Word2vec framework - An objective function

• For each position t = 1, . . . , T predict context words within a window of fixed size m,
given center word wj.

Likelihood = L(θ) =
T∏
t=1

∏
−m≤j≤m,j ̸=0

P
(
wt+j|wt; θ

)
• Where θ represents all variables to be optimized.
• The objective function (also cost or loss function) is defined as negative log
likelihood:

J(θ) = − 1T log ((L(theta)) =
T∑
t=1

∑
−m≤j≤m,j≠0

log P
(
wt+j|wt; θ

)
• The minimization of the objective function will maximize the accuracy of the model.

14



Word2vec framework - An objective function

• The objective function need to be minimized:

J(θ) = − 1T log ((L(theta)) =
T∑
t=1

∑
−m≤j≤m,j≠0

log P
(
wt+j|wt; θ

)
• The calculation of the P

(
wt+j|wt; θ

)
is crucial.

• For each word w we use two vectors:
• vw when w is a center word.
• uw when the w is context word.

• For center word c and context word o the probability:

P(o|c) =
exp

(
uTovc

)∑
w∈V exp (uTwvc)
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Word2vec framework - A prediction function

P(o|c) =
exp

(
uTovc

)∑
w∈V exp (uTwvc)

• uTovc is a dot product that compares similarity of o and c (cosine similarity)
•
∑

w∈V exp
(
uTwvc

)
normalize over the entire vocabulary V.

• It is an example of the softmax function Rn → Rn.

softmax(xi) =
exp(xi)∑n
j=1 exp(xj)

= pi

• The softmax function distribution maps arbitrary values of xi to a probability
distribution pi

• max because amplifies probability to largest xi
• soft because still assigns some probability to smaller xi

16



Word2vec framework - Training a model

• The θ represents all model parameters, in one large vector.
• The vector has d-dimensional vectors and V-many words.

θ =



va
...
vz
ua
...
uz


∈ R2dV

• These parameters are then optimized.
• A Gradient Descent algorithm fits as well as Stochastic Gradient Descent.
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Word2vec framework - Variants

• Two base models are used:
1. Skip-Gram (SG) where the contexts predicts words given the center word independently
on position.

2. Continuous Bag of Words (CBOW) where the center word is predicted from context words.
• Latent Semantics Analysis

• A different approach that computes the similarity according to co-occurrence of words in
a corpora.

• Space requirements are enormous.
• Incorporate Singular Value Calculation as a best approximation.

• GloVe: Global Vectors for Word Representation
• Combines both techniques and defines modified objective function:

J(θ) = 1
2

W∑
i,j=1

f (Pij)
(
uTi vj − log Pij

)2
• Fast training, scalable to huge corpora but works even on small ones.
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Glove Results
Glove	Visualizations

1/16/1829
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Language Modeling

• Language modeling is a task of predicting what word comes next.

books

bottles

minds

notebooks

the student opened their
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Language Modeling

• Language modeling is a task of
predicting what word comes
next.

• Given a sequence of words
x1, x2, . . . , xt, compute the
probability distribution of the
next word xt+1:

P(xt+1 = wj|xt, . . . , x1)

• Where wj is a word in the
vocabulary V = {w1, . . . ,w|V|}.
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n-Gram Language model

• An n-gram is a chunk of n consecutive words:
• unigrams: ”the”, ”students”, ”opened”, ”their”
• bigrams: ”the students”, ”students opened”, ”opened their”
• trigrams: ”the students opened”, ”students opened their”
• 4-grams: ”the students opened their”

• Idea is to collect a statistics about how frequently different n-grams are and use
them to predict next word.

• We assume that a word xt+1 depends only on the preceding (n− 1) words.

P(xt+1 = wj|xt, . . . , xt−n+2) =
P(xt+1, xt, . . . , xt−n+2)
P(xt, . . . , xt−n+2)

• The values may be computed from the corpora.
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n-Gram Language model

• The language model may be used to generate text.

today the …

today the price of gold per ton , while production of shoe lasts and shoe
industry , the bank intervened just after it considered and rejected an imf demand to
rebuild depleted european stocks , sept 30 end primary 76 cts a share

• The result is incoherent, more than two word need to be taken into account!!!
• The increasing of n leads to sparsity problem and increase the model size.
• Sparsity problem - the sequence never appear in the data.
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Neural Language model

• The task:
• Input: sequence of words: x1, . . . , xt
• Output: Probability of next word P(xt+1 = wj|xt, . . . , x1)

• A window approach may work similarly as for n-grams.
1. Input is one-hot-vectors
2. Compute word embedding for each word and concatenate as input.
3. Define a hidden layer.
4. Set output as softmax function over the hidden layer.

• This solves the problem of sparsity and reduces size of the model to linear.
• Some problems remains:

• The fixed window limits the precision and is never large enough.
• The weights are not shared between words in a window.
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Recurrent Neural Network (RNN)

• A neural network that is able to incorporate unlimited input.

input sequence x1 x2 x3 x4 · · ·

· · ·hidden states

y1 y2 y3 y4 · · ·output

W W W W
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Recurrent Neural Network (RNN)

• Advantages:
• Can process any length of input.
• Model size does not increasing with the input length.
• Computation of current step can use information from many steps back.
• Weights are shared across time steps.

• Disadvantages:
• Computation is very slow.
• It is difficult in practice access information from many steps back.
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Long Short Term memories (LSTM)

• More complex version of RNN.
• Capable to learn long term dependencies practically.
• Multi-layer architecture, with shortcuts and adaptive learning.
• The ”knowledge” flow is regulated using Gates.
• Gates are non-linear neural net layer (sigmoid) and regulate the amount of
information that is let through.

• It solves the problem with long term memories, while maintain short term memories
too.
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Recurrent Neural Network (RNN) - Examples

RNN as a political speech writer (input phrase Jobs)1

Good afternoon. God bless you.
The United States will step up to the cost of a new challenges
of the American people that will share the fact that we created
the problem. They were attacked and so that they have to say
that all the task of the final days of war that I will not be able
to get this done. The promise of the men and women who
were still going to take out the fact that the American people
have fought to make sure that they have to be able to protect
our part. ...

1https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
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Recurrent Neural Network (RNN) - Examples

LSTM as a novelist2

”The Malfoys!” said Hermione.
Harry was watching him. He looked like Madame Maxime.
When she strode up the wrong staircase to visit himself.
”I’m afraif I’ve definitely been suspended from power, no
chance - indeed?” said Snape. He put his head back behind
them and read groups as they crossed a corner and fluttered
down onto their ink lamp, and picked up his spoon. The
doorbell rang. It was a lot cleaner down in London...

2https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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Language models - usability

• Language modelling is a sub-component of other NLP systems:
• Speech Recognition

• An LM generates transcription according to the audio.
• Machine translation

• An LM generate translation according to the original text.
• Summarization

• An LM generate summary conditioned on original text.

30



Neural Machine Translation



Neural Machine Translation

• Machine Translation is a task to translate sequence X from source language into
sequence Y in target language.

• Historically (since 1950) rule-based models with bilingual dictionaries (mostly
Russian to English).

• Since 1990 a probabilistic model extracted from data was used.
• Searching for best sentence in English given the sequence in French

argmaxyP (y|x)

• Bayes rule break this into two components that are learnt separately.

= argmaxyP (x|y) P(y)

• P(y) is a language model, P (x|y) is a translation model.
• P(y) is learnt from monolingual data of good English text.
• P (x|y) is learnt from parallel corpus.
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Neural Machine Translation

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single
neural network.

• The architecture is called sequence-to-sequence (seq2seq) and it involves two RNNs.

s1 s2 s3 s4 t1 t2 t3 t4 t5 t6 t7

r1 r2 r3 r4 r5 r6 r7

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

32



Neural Machine Translation

• Advantages
• Better performance, more fluent, better context, better phrase similarities.
• Its a single neural network that is optimized together at once.
• Requires much less human engineering effort (no feature selection, the process is the
same for all languages pairs).

• Disadvantages
• Less interpretable (impossible to Debug the learning).
• Difficult to control (no rules, guidance, etc.).

• Advancements
• 2014 - first paper about NMT and seq2seq published.
• 2016 - Google Translate switched into NMT.
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Neural Machine Translation - Improvements

• Attention
• Idea: on each step of the decoded, focus on a particular part of the source sequence.
• The attention information is used for output generation directly.
• The attention highlight more important part of the source.
• Improves the long term memory usability.
• Applicable to other architectures than seq2seq.

• Usage:
• Summarization (long text to short text)
• Code generation (natural language into python script)
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Seq2seq Example - Summarization

• Get To The Point: Summarization with Pointer-Generator Networks, A.See (Stanford),
P.J. Liu (Google), Ch. D. Mannign (Stanford), 2016.

• Combination of :
• Seq2seq attention model - the encoder (bidirectional LSTM) and decoder (unidirectional
LSTM) cooperates with attention modeling mechanism.

• Pointer generator network - a principle that is able to copy word directly from source text
in case of words that are not in a vocabulary (names, locations, etc).

• Coverage mechanism that remove repetitions in generated abstract.

• Training data - CNN/Daily mail dataset
• News articles (781 tokens on average)
• Multi-sentence summaries (56 tokens in average)
• 287,226 training pairs
• 13,368 validation pairs
• 11,490 test pairs
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Seq2seq Example - Summarization

...

At
te
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io

n 
Di
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n

<START>

Vocabulary 
Distribution

Context Vector

Germany

a zoo

Partial Summary

"beat"

Germany  emerge  victorious     in           2-0          win       against  Argentina    on       Saturday    ...

En
co

de
r 

H
id

de
n

St
at

es

 Decoder
H

idden States

Source Text

Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.

et al., 2014), in which recurrent neural networks
(RNNs) both read and freely generate text, has
made abstractive summarization viable (Chopra
et al., 2016; Nallapati et al., 2016; Rush et al.,
2015; Zeng et al., 2016). Though these systems
are promising, they exhibit undesirable behavior
such as inaccurately reproducing factual details,
an inability to deal with out-of-vocabulary (OOV)
words, and repeating themselves (see Figure 1).

In this paper we present an architecture that
addresses these three issues in the context of
multi-sentence summaries. While most recent ab-
stractive work has focused on headline genera-
tion tasks (reducing one or two sentences to a
single headline), we believe that longer-text sum-
marization is both more challenging (requiring
higher levels of abstraction while avoiding repe-
tition) and ultimately more useful. Therefore we
apply our model to the recently-introduced CNN/
Daily Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which contains news articles (39
sentences on average) paired with multi-sentence
summaries, and show that we outperform the state-
of-the-art abstractive system by at least 2 ROUGE
points.

Our hybrid pointer-generator network facili-
tates copying words from the source text via point-
ing (Vinyals et al., 2015), which improves accu-
racy and handling of OOV words, while retaining
the ability to generate new words. The network,
which can be viewed as a balance between extrac-
tive and abstractive approaches, is similar to Gu
et al.’s (2016) CopyNet and Miao and Blunsom’s
(2016) Forced-Attention Sentence Compression,

that were applied to short-text summarization. We
propose a novel variant of the coverage vector (Tu
et al., 2016) from Neural Machine Translation,
which we use to track and control coverage of the
source document. We show that coverage is re-
markably effective for eliminating repetition.

2 Our Models

In this section we describe (1) our baseline
sequence-to-sequence model, (2) our pointer-
generator model, and (3) our coverage mechanism
that can be added to either of the first two models.
The code for our models is available online.1

2.1 Sequence-to-sequence attentional model

Our baseline model is similar to that of Nallapati
et al. (2016), and is depicted in Figure 2. The to-
kens of the article wi are fed one-by-one into the
encoder (a single-layer bidirectional LSTM), pro-
ducing a sequence of encoder hidden states hi. On
each step t, the decoder (a single-layer unidirec-
tional LSTM) receives the word embedding of the
previous word (while training, this is the previous
word of the reference summary; at test time it is
the previous word emitted by the decoder), and
has decoder state st . The attention distribution at

is calculated as in Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst +battn) (1)

at = softmax(et) (2)

where v, Wh, Ws and battn are learnable parame-
ters. The attention distribution can be viewed as

1www.github.com/abisee/pointer-generator
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Source Text

Germany  emerge  victorious     in           2-0          win       against  Argentina    on       Saturday    ...

...

<START>

Vocabulary Distribution

Context Vector

Germany

a zoo

beat

a zoo

Partial Summary

Final Distribution

"Argentina"

"2-0"

At
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Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen ∈ [0,1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article
words such as 2-0 are included in the final distribution. Best viewed in color.

a probability distribution over the source words,
that tells the decoder where to look to produce the
next word. Next, the attention distribution is used
to produce a weighted sum of the encoder hidden
states, known as the context vector h∗t :

h∗t = ∑i at
ihi (3)

The context vector, which can be seen as a fixed-
size representation of what has been read from the
source for this step, is concatenated with the de-
coder state st and fed through two linear layers to
produce the vocabulary distribution Pvocab:

Pvocab = softmax(V ′(V [st ,h∗t ]+b)+b′) (4)

where V , V ′, b and b′ are learnable parameters.
Pvocab is a probability distribution over all words
in the vocabulary, and provides us with our final
distribution from which to predict words w:

P(w) = Pvocab(w) (5)

During training, the loss for timestep t is the neg-
ative log likelihood of the target word w∗t for that
timestep:

losst =− logP(w∗t ) (6)

and the overall loss for the whole sequence is:

loss =
1
T ∑

T
t=0 losst (7)

2.2 Pointer-generator network
Our pointer-generator network is a hybrid between
our baseline and a pointer network (Vinyals et al.,
2015), as it allows both copying words via point-
ing, and generating words from a fixed vocabulary.
In the pointer-generator model (depicted in Figure
3) the attention distribution at and context vector
h∗t are calculated as in section 2.1. In addition, the
generation probability pgen ∈ [0,1] for timestep t is
calculated from the context vector h∗t , the decoder
state st and the decoder input xt :

pgen = σ(wT
h∗h
∗
t +wT

s st +wT
x xt +bptr) (8)

where vectors wh∗ , ws, wx and scalar bptr are learn-
able parameters and σ is the sigmoid function.
Next, pgen is used as a soft switch to choose be-
tween generating a word from the vocabulary by
sampling from Pvocab, or copying a word from the
input sequence by sampling from the attention dis-
tribution at . For each document let the extended
vocabulary denote the union of the vocabulary,
and all words appearing in the source document.
We obtain the following probability distribution
over the extended vocabulary:

P(w) = pgenPvocab(w)+(1− pgen)∑i:wi=w at
i (9)

Note that if w is an out-of-vocabulary (OOV)
word, then Pvocab(w) is zero; similarly if w does
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• 256-dimensional hidden states
• 128-dimensional word embedding
• 21,499,600 parameters to optimized
• Tesla K40m GPU, batch size 16.
• 230,000 training iterations
• Training time was 3 days and 4 hours.
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Seq2seq Example - Summarization

• 256-dimensional hidden states
• 128-dimensional word embedding
• 21,499,600 parameters to optimized
• Tesla K40m GPU, batch size 16.
• 230,000 training iterations
• Training time was 3 days and 4 hours.

Article: andy murray (…) is into
the semi-finals of the miami open ,
but not before getting a scare from
21 year-old austrian dominic thiem,
who pushed him to 4-4 in the sec-
ond set before going down 3-6 6-4,
6-1 in an hour and three quarters.
(...)
Summary: andy murray defeated
dominic thiem 3-6 6-4, 6-1 in an
hour and three quarters.
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Seq2seq Example - Summarization

• 256-dimensional hidden states
• 128-dimensional word embedding
• 21,499,600 parameters to optimized
• Tesla K40m GPU, batch size 16.
• 230,000 training iterations
• Training time was 3 days and 4 hours.

Article: (...) wayne rooney smashes
home during manchester united ’s
3-1 win over aston villa on saturday.
(...)
Summary: manchester united beat
aston villa 3-1 at old trafford on sat-
urday..
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Seq2seq Example - Summarization 2

• A work of Moseli Mots’oehli, University of Pretoria and me.
• Simplification of a model of See et. al.
• Encoder-Decoder Bidirectional LSTM architecture with Word2Vec for word embedding
on source and one-hot encoding on target and Attention principle.
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4 
 

By adding an attention layer as described in [1] between the encoder and the decoder, we allow 
the decoder to learn to put more focus on certain parts of the input article at the different time 
steps of summary generation as opposed to forcing it to represent its understanding of an entire 
article into one fixed length vector. This method performed best of the three by far both 
quantitatively and qualitatively and at a very little additional computational complexity over 
model B. The summaries make sense and are readable despite containing repetitions of words 
and phrases. Figure 2 shows the model with the added attention layer over the model B. 
However, this model also suffered from word repetitions. 

Attention layer equations: 

𝒆𝒕𝒊
𝒃 = 𝒗𝑻𝐭𝐚𝐧𝐡(𝑾𝒆𝒏𝒉𝒊

𝒆𝒏 + 𝑾𝒅𝒆𝒉𝒕
𝒅𝒆 + 𝒃𝒂𝒕𝒕)      (1) 

𝜶𝒕
𝒃 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒆𝒕

𝒃) =
𝐞𝐱𝐩 (𝒆𝒕

𝒃)

∑ 𝐞𝐱𝐩 (𝒆𝒕
𝒃)𝑻

𝒕
        (2) 

𝒄𝒕
𝒃 = ∑ 𝜶𝒕𝒊𝒉𝒊

𝒆
𝒊           (3) 

𝑷𝒗𝒐𝒄 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝑾′(𝑾[𝒉𝒕
𝒅𝒆, 𝒄𝒕

𝒃] + 𝒃) + 𝒃′)      (4) 

Where 𝑾𝒆𝒏, 𝑾𝒅𝒆 𝑎𝑛𝑑  𝒃𝒂𝒕𝒕  are learnable parameters, 𝑣𝑇 ∈ ℝ𝑇 is a pre-trained word2vec 
embedding. 

𝒉𝒊
𝒆𝒏 𝑎𝑛𝑑 𝒉𝒕

𝒅𝒆 Represent the 𝑖𝑡ℎ 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑡𝑡ℎdecoder hidden states respectively. 

𝜶𝒕
𝒃  ∈  ℝ𝑛 Represents a probability distribution over the input articles words in the form of encoder 

hidden states for the decoder to use when deciding where to focus on in producing the next word in the 
summary. N was set to 400 as the truncated article length. 

𝒄𝒕
𝒃 Is the context vector that is a weighted sum of the encoder hidden states when generating the 

𝑡𝑡ℎ  summary word and 𝑷𝒗𝒐𝒄 is a probability distribution over the target vocabulary (of fixed size) in 
generating the summary and 𝑾′, 𝑾, 𝒃, 𝒃′ are trainable parameters. 

 

Figure 2 Bidirectional seq2seq model with attention. The attention context vector Ct is computed for every 
decoder time step. It can be seen as a weighted sum of all the encoder hidden states, weighted based on how 
important each hidden state is in generating the decoder hidden state Ht. The result of the attention layer is a 
softmax layer over the entire target vocabulary to select the next word to include in the summary. 
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Article: usain bolt rounded off the world championships sunday by
claiming his third gold in moscow as he anchored jamaica to victory in
the mens 100 m relay. …the british quartet, who were initially fourth,
were promoted to the bronze which eluded their mens team. fraser
pryce, like bolt aged , became the first woman to achieve three golds
in the and the relay.
Golden Summary: usain bolt wins third gold of world championship.
anchors jamaica to 100m relay victory. eighth gold at the championships
for bolt. jamaica double up in womens 100m relay.
Summary: usain usain bolt wins third gold world championship anchors
anchors jamaica x x relay victory victory eighth gold at bolt.
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Article: it is official american president barack obama wants lawmak-
ers to weigh in on whether to use military force in syria obama sent a
letter to the heads of the house and senate on saturday night hours
after announcing that he believes military action against syrian targets
is the right step to take over the alleged use of chemical weapons the
proposed legislation from obama asks congress to approve the use of
military force ”to deter disrupt prevent and degrade the potential for fu-
ture uses of chemical weapons or other weapons of mass destruction
…
Golden Summary: syrian official obama climbed to the top of the tree
”does not know how to get down” obama sends a letter to the heads of
the house and senate obama to seek congressional approval on military
action against syria aim is to determine whether
Summary: a syrian official official climbed climbed the top the the tree
does does not not not obama get not sends 40
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Article: with the sweltering summer bidding adieu and pleasant autumn
temperatures setting in nows the time to explore new delhi travelers to
the indian capital may hesitate to try the citys famed street foods fearing
the notorious ”delhi belly ” but skip the street food scene and you miss
an essential part of the delhi experience here are seven street delicacies
among delhis endless choices including a mix of vegetarian non veg and
dessert …
Golden Summary: if you have not tried these street foods you have not
been to delhi the most iconic chaat are aloo tikki dahi bhalla and papri
chaat the best kulfi ice cream is topped with rose milk faluda
Summary: new if you you have not not foods you have have have not
been delhi to the most most is
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