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PDEs and the Curse of Dimensionality



PDEs

A PDE for the function u(x1, . . . , xd) is an equation of the form

F
(
x1, . . . , xd , u,

∂u

∂x1
, . . .

∂u

∂xd
,
∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
, . . .

)
= 0.

together with suitable boundary conditions.



Heat Equation

∂u

∂t
(t, x) =

∂2u

∂x1∂x1
+

∂2u

∂x2∂x2
+

∂2u

∂x3∂x3
+ g(t, x), u(0, x) = ϕ(x)

t ∈ (0,∞), x ∈ R3; d = 4.



Explicit Solution of Heat Equation if g = 0

Let u(t, x) satisfy

∂u

∂t
(t, x) =

∂2u

∂x1∂x1
+

∂2u

∂x2∂x2
+

∂2u

∂x3∂x3
, u(0, x) = ϕ(x)

t ∈ (0,∞), x ∈ R3; d = 4.

Then

u(t, x) =
1

(4πt)3/2

∫
R3

ϕ(y) exp(−|x − y |2/4t)dy .
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Fluid Dynamics

∂u

∂t
(t, x , v) + v · ∇u(t, x , v) = Qu(t, x , v)

t ∈ (0,∞), x , v ∈ R3; d = 7.



Schrödinger Equation

Wave function of non-relativistic quantum mechanical system of N
electons in a field of K nuclei of charge Zν and fixed position Rµ ∈ R3

i~
∂

∂t
Ψ(r1, . . . , rN ; t) = −1

2

N∑
ξ=1

∆iΨ(r1, . . . , rN ; t)−

N∑
ξ=1

K∑
ν=1

Zν
|rξ − Rν |

Ψ(r1, . . . , rN ; t) +
1

2

N∑
ξ=1

N∑
η=1

1− δξ,η
|rξ − rη|

,

t ∈ (0,∞), r1, . . . , rN ∈ R3; d = 3N + 1.



Black-Scholes Equation

Pricing a portfolio of N financial derivatives

∂u

∂t
(t, x) =

1

2

N∑
i ,j=1

xixjβiβj〈ςi , ςj〉RN (
∂2u

∂xi∂xj
)(t, x)+

N∑
i=1

µixi (
∂u

∂xi
)(t, x)

u(0, x) = max{K −
N∑
i=1

cixi , 0}

t ∈ (0,∞), x ∈ RN ; d = N + 1.



Learning the PDE [Rudy et.al. (2017)]



Finite Difference Approach

Want to approximate u(x) for x ∈ [0, 1]d .

Let

ui1,...,id ∼ u(i1ε, . . . , idε), (i1, . . . , id) ∈ {0, . . . , bε−1c}d ,

ui1,...,il+1,...,id − ui1,...,il ,...,id
ε

∼ ∂

∂xl
u(i1ε, . . . , idε),

(i1, . . . , id) ∈ {0, . . . , bε−1c}d ,

and so on,

and solve the discrete system

F
(
i1ε, . . . , idε, ui1,...,id ,

ui1+1,...,id − ui1,...,id
ε

, . . .

)
= 0

(i1, . . . , id) ∈ {0, . . . , bε−1c}d .
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Curse of Dimensionality

The system

F
(
i1ε, . . . , idε, ui1,...,id ,

ui1+1,...,id − ui1,...,id
ε

, . . .

)
= 0

(i1, . . . , id) ∈ {0, . . . , bε−1c}d .

requires us to solve an equation in ui1,...,id for
(i1, . . . , id) ∈ {0, . . . , bε−1c}d .

Exponential Dependence on the Dimension

Let ε = 1
2 (take two samples in each coordinate). Then these are 2d

unknowns.  intractable for high-dimensional problems!
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Curse of Dimensionality

The complexity of approximating a general d-dimensional function
scales exponentially in d .

Suppose we have a problem where we aim to ap-
proximate a d-dimensional function. An algorithm
to solve the problem suffers from the curse of di-
mensionality if its computational complexity de-
pends exponentially on the dimension d .
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Black-Scholes Equation

Pricing a portfolio of N financial derivatives

∂u
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t ∈ (0,∞), x ∈ RN ; d = N + 1.

Realistic values: d = 100− 1000.

Complexity of finite difference method: 2100 − 21000.

Number of atoms in the universe: 2250.
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Black-Scholes Equation

Option pricing is extremely relevant and has to be done every
day in the financial industry

All algorithms for the solution of the Black-Scholes equation
suffer from the curse of dimensionality!
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MNIST

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

http://yann.lecun.com/exdb/mnist/
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5ConvNet

This is a 784-dimensional function

Apparently, deep learning does not suffer from the curse of
dimensionality for certain classification problems!

Can this also be used for the solution of PDEs?
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A Crash Course in Statistical Learning
Theory



Data Generating Distribution

Suppose that there exists a probability distribution on R784 that
randomly generates handwritten digits.

 Variational Autoencoder Demo
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But we only have samples and do not know the distribution (X ,Y )

A mathematical learning problem seeks
to infer the regression function E[Y |X = x ]
from random samples (xi , yi)

m
i=1 of (X ,Y ).
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Mathematical Formulation

Let (Ω,F ,P) be a probability space and let X : Ω→ Rd and
Y : Ω→ Rn be random vectors. Find the best functional
relationship Û : Rd → Rn between these vectors in the sense
that

Û = argmin
U:Rd→Rn

∫
Ω
|U(X (ω))− Y (ω)|2dP(ω)

= argmin
U:Rd→Rn

E
[
|U(X )− Y |2

]
.

We have
Û(x) = E [Y |X = x ] .

Û is called the regression function.
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relationship Û : Rd → Rn between these vectors in the sense
that
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Statistical Learning Theory

Let z =
(
(x1, y1), . . . , (xm, ym)

)
be m realizations of samples

independently drawn according to (X ,Y ). For a function
U : Rd → Rk define the empirical risk of U by

Ez(U) =
1

m

m∑
i=1

|U(xi )− yi |2.

Empirical Risk Minimization (ERM) picks a hypothesis class
H ⊂ C (Rd ,Rk) and computes the empirical regression function

ÛH,z ∈ argmin
U∈H

Ez(U).

Example H = {Polynomials of degree ≤ p}.
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Figure: Error with Polynomial Degree

Bias-Variance-Problem

“Capacity” of the hypothesis
space has to be adapted to the
complexity of the target
function and the sample size!
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Bias-Variance Decomposition

Let (X ,Y ) data generating r.v.’s and Û the regression function. Let
z = (xi , yi )

m
i=1 i.i.d. samples, H a hypothesis class and ÛH,z the

empirical regression function. We seek to understand the error

ε := E(ÛH,z)− E(Û) = E|ÛH,z(X )− Û(X )|2

Bias-Variance Decomposition

Let UH := argminU∈H E|U(X )− Û(X )|2,
εapprox := E|UH(X )− Û(X )|2 the approximation error and
εgeneralize := E(UH,z)− E(UH) the generalization error. Then
ε = εapprox + εgeneralize .

Main Theorem [e.g., Cucker-Zhou (2007)]

If m & ln(N (H,c·η))
η2 (and very strong conditions hold), then

εgeneralize ≤ η w.h.p. where N (H, s) is the s-covering number of H
w.r.t. L∞ .

Problems for Data Science Applications:

Assumption that data is iid is debatable

Different asymptotic regime in deep learning (where often
#DOFs >> #training samples)

Without knowing P(X ,Y ) it is impossible to control the
approximation error.
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w.r.t. L∞ .

Problems for Data Science Applications:

Assumption that data is iid is debatable

Different asymptotic regime in deep learning (where often
#DOFs >> #training samples)

Without knowing P(X ,Y ) it is impossible to control the
approximation error.



PDEs as Learning Problems



Explicit Solution of Heat Equation if g = 0

Let u(t, x) satisfy

∂u

∂t
(t, x) =

∂2u

∂x1∂x1
+

∂2u

∂x2∂x2
+

∂2u

∂x3∂x3
, u(0, x) = ϕ(x)

t ∈ (0,∞), x ∈ R3; d = 4.

Then

u(t, x) =

∫
R3

ϕ(y)
1

(4πt)3/2
exp(−|x − y |2/4t)dy .

In other words

u(t, x) = E [ϕ(Z x
t )] , Z x

t ∼ N (x , t1/2I ).

In other words, for x ∈ [u, v ]3 and X ∼ U [u, v ]3 and Y = ϕ
(
ZX
t

)
we

have
u(t, x) = E [Y |X = x ] .

The solution u(t, x) of the PDE can be interpreted
as solution to the learning problem with data distribution
(X ,Y ), where X ∼ U [u, v ]3 and Y = ϕ(ZX

t ) and ZX
t ∼

N (x , t1/2I )!

Contrary to conventional ML problems, the data dis-
tribution is now explicitly known – we can simulate as much
training data as we want!

We will see in a minute that similar properties hold
for a much more general class of PDEs!
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Linear Kolmogorov Equations

Given Σ : Rd → Rd×d , µ : Rd → Rd and initial value ϕ : Rd → R,
find u : R+ × Rd → R with

∂u

∂t
(t, x) =

1

2
Trace

(
Σ(x)ΣT (x)Hessxu(t, x)

)
+ µ(x) · ∇xu(t, x),

(t, x) ∈ [0,T ]× Rd , u(0, x) = ϕ(x).

Examples include convection-diffusion equations and
Black-Scholes Equation.

Standard methods such as sparse grid methods, sparse tensor
product methods, spectral methods, finite element methods or
finite difference methods are incapable of solving such equations
in high dimensions (d = 100)!
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Special Case: Pricing of Financial Derivatives

Given a portfolio consisting of d assets with value (xi (t))di=1.

European Max Option: At time T , exercise option and receive

G (x) := max

{
d

max
i=1

(xi − Ki ), 0

}
(Black-Scholes (1973)): in the absence of correlations the
portfolio-value u(t, x) satisfies

(
∂

∂t

)
u(t, x) +

µ

2

d∑
i=1

xi

(
∂

∂xi
u(t, x)

)
+
σ2

2

d∑
i=1

|xi |2
(
∂2

∂x2
i

u(t, x)

)
= 0,

u(T , x) = G (x).

Pricing Problem: u(0, x) =??.
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Kolmogorov PDEs as Learning Problems

For x ∈ Rd and t ∈ R+ let

Z x
t := x +

∫ t

0
µ(Z x

s )ds +

∫ t

0
Σ(Z x

s )dWs .

Then (Feynman-Kac)

u(T , x) = E(ϕ(Z x
T )).

Lemma (Beck-Becker-G-Jafaari-Jentzen (2018))

Let X ∼ U[a,b]d and let Y = ϕ(ZT
X ). The solution Û of the

mathematical learning problem with data distribution (X ,Y ) is given
by

Û(x) = u(T , x), x ∈ [a, b]d ,

where u solves the corresponding Kolmogorov equation.
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Solving linear Kolmogorov Equations
by means of Neural Network Based
Learning



The Vanilla DL Paradigm

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi , yi )

m
i=1 ⊂ R784 × R10.

Fix network architecture,
e.g., number of layers (for
example L = 3) and
numbers of neurons
(N1 = 30, N2 = 30).

The learning goal is to
find the empirical
regression function
fz ∈ Hσ(784,30,30,10).

Typically solved by
stochastic first order
optimization methods.
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Description of Image Content

ImageNet Challenge



Deep Learning Algorithm

1. Generate training data z = (xi , yi )
m
i=1

iid∼ (X , ϕ(ZT
X )) by

simulating ZT
X with the Euler-Maruyama scheme.

2. Apply the Deep Learning Paradigm to this training data
...meaning that

(i) we pick a network architecture (N0 = d ,N1, . . . ,NL = 1), and let
H = Hσ(N0,...,NL) and

(ii) attempt to approximately compute

ÛH,z = argmin
U∈H

1

m

m∑
i=1

(U(xi )− yi )
2

in Tensorflow.
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Runtime

in seconds

0 0.998253 0.998254 1.003524 0.5
10000 0.957464 0.957536 0.993083 44.6
50000 0.786743 0.786806 0.828184 220.8

100000 0.574013 0.574060 0.605283 440.8
150000 0.361564 0.361594 0.384105 661.0
200000 0.001419 0.001784 0.010423 880.8
500000 0.001419 0.001784 0.010423 2200.7
750000 0.001419 0.001784 0.010423 3300.6

Figure: Estimated errors associated to the solution u(1, ·) of the
100-dimensional parabolic PDE ∂u

∂t (t, x) = ∆xu(t, x), u(0, x) = |x |2,
x ∈ [0, 1]100.
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All computations were performed in single precision (float32) on a
NVIDIA GeForce GTX 1080 GPU with 1974 MHz core clock and 8
GB GDDR5X memory with 1809.5 MHz clock rate. The underlying
system consisted of an Intel Core i7-6800K CPU with 64 GB
DDR4-2133 memory running Tensorflow 1.5 on Ubuntu 16.04.
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Some Theoretical Results



Linear Affine Kolmogorov Equations

Given Σ : Rd → Rd×d , µ : Rd → Rd affine and initial value
ϕ : Rd → R, find u : R+ × Rd → R with

∂u

∂t
(t, x) =

1

2
Trace

(
Σ(x)ΣT (x)Hessxu(t, x)

)
+ µ(x) · ∇xu(t, x),

(t, x) ∈ [0,T ]× Rd , u(0, x) = ϕ(x).

Includes Black-Scholes Equation with correlations!

Theorem [G-Hornung-Jentzen-Von Wurstenberger (2018)], simplified
version

Suppose that ϕ ∈ Hσ(N0,...,NL) (or can be well approximated by NNs).

Then for all ε > 0 there is Φε with size(Φε) . size(ϕ) · ε−2 and

sup
x∈[a,b]d

|u(T , x)− Rσ(Φε)(x)| ≤ ε.

The implicit constant depends at most polynomially on the dimension
d = N0.
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Option Pricing without Curse of Dimensionality

Theorem [Berner-G-Jentzen (2018)], very special case

Let ϕ(x) = min{max{max(xi − Ki ), 0},R} or
ϕ(x) = min{max{

∑d
i=1 xi − K , 0},R} (or any typical option). Then

for all ε > 0 there is Φε ∈ HReLU
(N0,...,NL) with size(Φε) = O(ε−2) and

1

(b − a)d/2

(∫
[a,b]d

|u(T , x)− Rσ(Φε)(x)|2dx

)1/2

≤ ε.

Such networks can be found by solving the ERM problem with
m ∼ ε−4 samples. The implicit constants depend at most
polynomially on the dimension d = N0!

Due to compositional structure of NNs, all results hold also for
options operating on options...
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Wrap Up

Several PDEs can be reformulated as learning problem

Neural network based numerical solution of high-dimensional
PDEs is extremely promising both empirically and
mathematically – and it is possible to prove real theorems!

Specifically, we can prove that these methods are capable of
overcoming the curse of dimensionality for an important class of
PDEs arising in computational finance.

We can observe these properties in simulations.
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Thank You!

Questions?
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