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PDEs and the Curse of Dimensionality



PDEs

A PDE for the function u(x,...,xy) is an equation of the form
ou ou  0%u 0%u
Flxt,. .o xg,ly —, ... —, ey ,... | =0.
<X1 o 8X1 8Xd 8X18X1 8X18Xd >

together with suitable boundary conditions.



Heat Equation

[L) Cormrunt Tenperatune - Cesius
o0

[L3) Certart Terp eraburs - Caling
€0

ou d%u 9%u d%u

8t(t7X) - 8X18X1 + szaxz + 8X38X3 + g(t,x), U(O’X) - QP(X)

t €(0,00),x ER3 d = 4.



Explicit Solution of Heat Equation if g =0

Let u(t, x) satisfy
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Explicit Solution of Heat Equation if g =0

Let u(t, x) satisfy

@(tx)— 0%u n 0%u n 0%u uf
ot"’ - 0x10x1 O0x20Xo (9X38X37

0,x) = ¢(x)
t € (0,00),x €R3 d = 4.
Then

(%) = s | o) epl—lx— y/ady.



Fluid Dynamics
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Figure 8: Mach 3 wind tunnel: Polynomial degree ' = 40, 35k Vertices, Maxwellian molecules, 28.9\/

total DoFs. Coloring: pressure, contour lines: density. Computations were carried out on the Euler cluster
of ETH Zurich (Xeon Es5-2697 v2) with 360 cores.

Time: 0.09 Time: 0.27

Time: 0.46 Time: 0.82

%(t,x, v) 4+ v-Vu(t,x,v) = Qu(t,x,v)

t € (0,00),x,v €ER3; d =7.



Schrodinger Equation

Wave function of non-relativistic quantum mechanical system of N
electons in a field of K nuclei of charge Z, and fixed position R,, € R3

.0 1
Iha“/(l’l,...,r/\/; t) = —2;A;\U(r1,...,r/\,; t)—
N K N N
1 1— 0e,
I’]_, .,I’N;t)-i-* ’ )
ZZ‘Q_M 2zz|rg—rn|

E=1v=1

€ (0,00), r1,...,ry €ER3; d =3N +1.



Black-Scholes Equation

Pricing a portfolio of N financial derivatives

du Pu o NN~ O
Sltx Zx,xjmj (s g5 e+ sl ) (6)

ij=1 i=1 !

€ (0,00), xeRN; d = N +1.



Learning the PDE [Rudy et.al. (2017)]

Full data

Compressed data

1a. Data collection

1b. Build nonlinear
library of data and
derivatives

Wt

A
5
= |-3:=:5% 23] e wy = O(w,u,v)§

2b. Compressed library

we = O(w, u,v)§
[re————] Cw; = CO(w, u, v)€

oo
E==z=ssE=s3)
Sampling

C =]

»

1lc. Solve sparse
regression
m'ggnmllei = well3 + Mgl

¥

d. Identified dynamics
wi + 0.993luw, + 0.9910vw,
= 0.0099wq; + 0.0099wy,
Compare to true
Navier-Stokes (Re = 100)

— 1 2
w+ (- Viw= H(‘V w

%

2¢. Solve compressed
sparse regression
Mggmin"C(')i —Cwil} + MEllo
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Finite Difference Approach

Want to approximate u(x) for x € [0, 1]¢.
m Let

Uy, .ig ™ u(ile, ceey ide), (il, RN id) S {0, RN \_E_IJ}CI,

Yiy,ooittl,sig = Uinyipynsia u(ire ig€)
AR ] )

€ Ix;
(il, cee, id) € {0, RN LﬁflJ}d,
and so on,
m and solve the discrete system

. . Ui1+]_ vl T uil eyl
f(lle,...,/de, Uy i o el .. =0

€

(it,...,ig) €{0,..., e 1]},




Curse of Dimensionality

The system

- (ile’ e Ui Ui1+1,...,fd€_ Uiy,...ig 5. > =0
(/1,...,id) € {07"'7 kilj}d'

requires us to solve an equation in uj, ;. for
(it rig) € {0, [€1]}9.
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unknowns.



Curse of Dimensionality

The system

. . uf1+1 Y uil sl
f(’lﬁ,--',/dE,Uil,...,id, o e .. =0

(/1,.. .,id) S {0,.. . leflj}d.

requires us to solve an equation in u; i,
(it rig) € {0, [€1]}9.

Exponential Dependence on the Dimension

for

Let e = % (take two samples in each coordinate). Then these are 2¢
unknowns. ~- intractable for high-dimensional problems!



Curse of Dimensionality




Curse of Dimensionality

The complexity of approximating a general d-dimensional function
scales exponentially in d.



Curse of Dimensionality

659995 5596596

Suppose we have a problem where we aim to ap-
proximate a d-dimensional function. An algorithm
The| to solve the problem suffers from the curse of di-
mensionality if its computational complexity de-
pends exponentially on the dimension d.

ttion




Black-Scholes Equation

m Pricing a portfolio of N financial derivatives
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Black-Scholes Equation

m Pricing a portfolio of N financial derivatives

ou
at( Z XI)(JBIB_/ Siy §J>R’V a a )"‘Z M,X,

I_jl

u(0, x) = max{K — Z ¢ixi, 0}
i=1

€ (0,00), xeRN; d = N +1.
m Realistic values: d = 100 — 1000.

m Complexity of finite difference method: 2190 — 21000,

= Number of atoms in the universe: 2250,

)



Black-Scholes Equation
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m Option pricing is extremely relevant and has to be done every
day in the financial industry



Black-Scholes Equation

S({stock price)
100

20
a0
70
&0
a0 M
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30

an 100 130 Z0oo z30

m Option pricing is extremely relevant and has to be done every
day in the financial industry

m All algorithms for the solution of the Black-Scholes equation
suffer from the curse of dimensionality!
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m Every image is given as a
28 x 28 matrix
x € R28><28 ~ R7842
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m Every image is given as a

28 x 28 matrix
x € R28><28 ~ R7842

m Every label is given as a
10-dim vector y € R10
describing the ‘probability’
of each digit
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m Apparently, deep learning does not suffer from the curse of
dimensionality for certain classification problems!



MNIST

> I

m This is a 784-dimensional function

m Apparently, deep learning does not suffer from the curse of
dimensionality for certain classification problems!

Ny

Can this also be used for the solution of PDEs?



A Crash Course in Statistical Learning
Theory



Data Generating Distribution

Suppose that there exists a probability distribution on R78* that
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Data Generating Distribution

Suppose that there exists a probability distribution on R78* that
randomly generates handwritten digits.

B|5[%|3
&
pﬂ@ + -? f'

~— [EgHE

|~ Variational Autoencoder Demo|
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given data distribution (X, Y)
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If we knew the data distribution (X, Y), the best functional relation
between X and Y would simply be E[Y|X = x]!
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A New Look

But we only have samples and do not know the distribution (X, Y)

150

125

A mathematical learning problem seeks
to infer the regression function E[Y|X = x]

from random samples (x;, y;)™; of (X, Y).
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m Let (Q,F,P) be a probability space and let X : Q — R9 and
Y : Q — R" be random vectors. Find the best functional
relationship U : RY — R” between these vectors in the sense
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Mathematical Formulation

m Let (Q,F,P) be a probability space and let X : Q — R9 and
Y : Q — R" be random vectors. Find the best functional
relationship U : RY — R” between these vectors in the sense

that
= argmln/ |U(X — Y(w)PdP(w)
U:RI—-R"
= argmin E [|U(X) — ]2] .
U:R4—R"
m We have

U(x)=E[Y|X = x].

U is called the regression function.
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Statistical Learning Theory

= Let z= ((x1,¥1),--.,(Xm, ym)) be m realizations of samples
independently drawn according to (X, Y). For a function
U: RY — Rk define the empirical risk of U by

Z |U(xi) — yil
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Statistical Learning Theory

= Let z= ((x1,¥1),--.,(Xm, ym)) be m realizations of samples
independently drawn according to (X, Y). For a function
U: RY — Rk define the empirical risk of U by

Z |U(xi) — yil

m Empirical Risk Minimization (ERM) picks a hypothesis class
H C C(RY,R¥) and computes the empirical regression function

Uy, € argmin &,(U).
UcH

m Example H = {Polynomials of degree < p}.
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Degree too low:

underfitting. Degree to high: overfitting!



Figure: Error with Polynomial Degree



Figure: Error with Polynomial Degree

Bias-Variance-Problem
“Capacity” of the hypothesis
space has to be adapted to the
complexity of the target
function and the sample size!



Bias-Variance Decomposition

Let (X, Y) data generating r.v.'s and U the regression function. Let
z = (x;,y;), i.i.d. samples, H a hypothesis class and Uy, the
empirical regression function. We seek to understand the error
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Bias-Variance Decomposition

Let (X, Y) data generating r.v.’s and U the regression function. Let
z = (x;,y;), i.i.d. samples, H a hypothesis class and Uy, the
empirical regression function. We seek to understand the error

¢ = E(U2) — E(0) = B[Oy o(X) — O(X)?

Bias-Variance Decomposition

Let Uy := argminycy E[U(X) — 0(x)?,
€approx = E|Ux(X) — U(X)|? the approximation error and
€generalize ‘= E(Up,z) — E(Uy) the generalization error. Then

€ = €approx T Egeneralize-

Main Theorem [e.g., Cucker-Zhou (2007)]

If m2> In(V(#.cn)) (and very strong conditions hold), then
€generalize < 1) W.h.p. where N'(#,s) is the s-covering number of H
w.r.t. L.



Bias-Variance Decomposition

Let (X, Y) data generating r.v.'s and U the regression function. Let
z = (x;,y;), i.i.d. samples, H a hypothesis class and Uy, the
empirical regression function. We seek to understand the error

e = E(Uyz) — E(0) = E|U1(X) — O(X)2

Bias-Variance Decomposition

Let Uy := argminycy E[U(X) — 0(x)?,
€annrox = E| U (X) — U(X)I|? the approximation error and
Problems for Data Science Applications:

m Assumption that data is iid is debatable
» Different asymptotic regime in deep learning (where often l
#DOFs >> #training samples)

m Without knowing P(x vy it is impossible to control the

approximation error.
W.rt. L
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Explicit Solution of Heat Equation if g =0

Let u(t, x) satisfy
Ou 0%u d%u 0%u

81.' (t,X) - 8X18X1 + 8X2(9X2 + 8X38X37 u(

t € (0,00),x €R3 d = 4.
Then

0,x) = ¢(x)

_ 1 2
(%) = [ o) s o0l =y a0y
In other words
u(t,x) =E[p(Z0)], ZF ~N(x, t'/21).

In other words, for x € [u, v]* and X ~ U[u, v]? and Y = ¢ (Z) we
have
u(t,x) =E[Y|X =x].
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te(0,00),x e R d=4.
Then

_ 1 2
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In other words
u(t,x) =E[p(Z0)], ZF ~N(x, t'/21).

In other words, for x € [u, v]* and X ~ U[u, v]? and Y = ¢ (Z) we
have
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as solution to the learning problem with data distribution
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¥  Contrary to conventional ML problems, the data dis-
tribution is now explicitly known — we can simulate as much
training data as we want!

In other words, for x € [u, v]* and X ~ U[u,v]* and Y = ¢ (Z7) we
have
u(t,x) =E[Y|X =x].
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The solution u(t, x) of the PDE can be interpreted
as solution to the learning problem with data distribution
(X,Y), where X ~ Ulu,v]Pand Y = ¢(ZX) and ZX ~
N(x, tY/2)

N
~ 7
\ (7
= . .
¥  Contrary to conventional ML problems, the data dis-
tribution is now explicitly known — we can simulate as much
training data as we want!

N1
~ 7
@

¥  We will see in a minute that similar properties hold
for a much more general class of PDEs!
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Given ¥ : RY — R9*9 1 : R? — R? and initial value ¢ : RY — R,
find u: Ry x RY — R with
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(t,x) €10, T] x R, u(0, x) = p(x).
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Linear Kolmogorov Equations

Given ¥ : RY — R9*9 1 : R? — R? and initial value ¢ : RY — R,
find u: Ry x RY — R with

%(t,x) = %Trace (Z(X)ZT(X)Hesqu(t, X)) + p(x) - Vxu(t, x),

(t,x) €10, T] x R, u(0, x) = p(x).

m Examples include convection-diffusion equations and
Black-Scholes Equation.

m Standard methods such as sparse grid methods, sparse tensor
product methods, spectral methods, finite element methods or
finite difference methods are incapable of solving such equations
in high dimensions (d = 100)!
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Special Case: Pricing of Financial Derivatives

= Given a portfolio consisting of d assets with value (x;(t))%_;.

m European Max Option: At time T, exercise option and receive

1=

G(x) := max {m‘éx(x,- - K,-),O}

m (Black-Scholes (1973)): in the absence of correlations the
portfolio-value u(t, x) satisfies

m Pricing Problem: u(0, x) =77.
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Kolmogorov PDEs as Learning Problems
For x € RY and t € Ry let
t t
zx :=x+/ ,u(Zj)der/ ¥ (ZX)dW..
0 0

Then (Feynman-Kac)

u(T, x) = E(p(27))-

Lemma (Beck-Becker-G-Jafaari-Jentzen (2018))

Let X ~ Uy, pja and let Y = @(Z)). The solution U of the
mathematical learning problem with data distribution (X, Y') is given

by A
Ux)=u(T,x), xE€]a, b]d,

where u solves the corresponding Kolmogorov equation.



Solving linear Kolmogorov Equations
by means of Neural Network Based
Learning
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The Vanilla DL Paradigm

m Every image is given as a
28 x 28 matrix m Given labeled training

x € R28x28  R784. data
(i, yi), C R x R0,

S m Fix network architecture,
e.g., number of layers (for

example L = 3) and

m Every label is given as a numbers of neurons
10-dim vector y € R10 (N1 =30, N, = 30).
describing the ‘probability’ m The learning goal is to
of each digit find the empirical

regression function

fo € H{784,30,30,10)"

m Typically solved by
stochastic first order
optimization methods.

o
L N I R



Description of Image Content

ImageNet Challenge

starfish drilling platform golfcart Egyptian cat

grilie mushroom cherry adagascar cat

ble agaric dalmatian monkey
E_Ij“.;'i.ll‘ mushroom grape spider monkey
pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man’'s-fingers currant howler monkey
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Deep Learning Algorithm

1. Generate training data z = (x;, i)™, 2 (X, (Z))) by

simulating Z; with the Euler-Maruyama scheme.
2. Apply the Deep Learning Paradigm to this training data
...meaning that
(i) we pick a network architecture (Np = d, Nq,..., N, = 1), and let
H = HETNo,.--,NL) and
(ii) attempt to approximately compute

m

N 1
Uy, , = argmin — Z(U(X;) —yi)?

m
UeH Py

in Tensorflow.
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00 100000 200000 300000 400000 500000
Number of iterations
Number Relative Relative Relative Runtime
of steps L1(>‘[0,1]d ; R)-error LZ(A[OJJd ; R)-error L (>‘[0,1]d; R)-error in seconds
0 0.998253 0.998254 1.003524 0.5
10000 0.957464 0.957536 0.993083 44.6
50000 0.786743 0.786806 0.828184 220.8
100000 0.574013 0.574060 0.605283 440.8
150000 0.361564 0.361594 0.384105 661.0
200000 0.001419 0.001784 0.010423 880.8
500000 0.001419 0.001784 0.010423 2200.7
750000 0.001419 0.001784 0.010423 3300.6

Figure: Estimated errors associated to the solution u(1,-) of the
100-dimensional parabolic PDE 24(t,x) = Au(t, x), u(0,x) = |x|?,

x € [0, 1]10°,




Number Relative Relative Relative Runtime
of steps Ll()‘[QO,llO]d; R)-error L2(/\[90,110]d; R)-error L (>\[90,110]d ; R)-error in seconds
0 1.004285 1.004286 1.009524 1
25000 0.842938 0.843021 0.87884 110.2
50000 0.684955 0.685021 0.719826 219.5
100000 0.371515 0.371551 0.387978 437.9
150000 0.064605 0.064628 0.072259 656.2
250000 0.001220 0.001538 0.010039 1092.6
500000 0.000949 0.001187 0.005105 2183.8
750000 0.000902 0.001129 0.006028 3275.1

Figure: Estimated errors associated to the solution u(T,-) of the

100- dlmenS|onaI uncorrelated Black Scholes PDE

Bu( )

u(0,x) = exp(—rT) max{ max,-e{l,zw’

2 2171 |U X’| (

)(t X) + 2,71 M/X/(ax )(t X)

a4y xi —100,0}, x € [90, 110]*%°,




Number Relative Relative Relative Runtime
of steps Ll()‘[go,llo]d; R)-error Lz(/\[go,llo]d; R)-error L>° ()‘[90,110]d i R)-error in seconds
0 1.003383 1.003385 1.011662 0.8
25000 0.631420 0.631429 0.640633 112.1
50000 0.269053 0.269058 0.275114 223.3
100000 0.000752 0.000948 0.00553 445.8
150000 0.000694 0.00087 0.004662 668.2
250000 0.000604 0.000758 0.006483 1119.3
500000 0.000493 0.000615 0.002774 2292.8
750000 0.000471 0.00059 0.002862 3466.8

Figure: Estimated errors associated to the solution u(T, ) of the
100 dimensional correlated Black Scholes PDE

9t x) =337, 1XIXJBIﬁJ<<H<J>Rd(3X,3X )(t,x) + Sy pixi(52)(t, %),
u(07x) =exp(—uT) max{llO —minjcqio,. ap{xits O}, x € [90,110]%00,



Number Relative Relative Relative Runtime
of steps Ll()‘[go.llo]d; R)-error Lz(/\[go,llo]d; R)-error L>° ()‘[90,110]d i R)-error in seconds
0 1.003383 1.003385 1.011662 0.8
25000 0.631420 0.631429 0.640633 112.1
50000 0.269053 0.269058 0.275114 223.3
100000 0.000752 0.000948 0.00553 445.8
150000 0.000694 0.00087 0.004662 668.2
250000 0.000604 0.000758 0.006483 1119.3
500000 0.000493 0.000615 0.002774 2292.8
750000 0.000471 0.00059 0.002862 3466.8

Figure: Estimated errors associated to the solution u(T,-) of the
100 dimensional correlated Black Scholes PDE

9t x) =337, 1X:>95:51<<~<J>Rd(ax,ax )(t,x) + Sy pixi(52)(t, %),
(07x) =exp(—uT) max{llO —minjcqio,. ap{xits O}, x € [90,110]%00,

All computations were performed in single precision (float32) on a
NVIDIA GeForce GTX 1080 GPU with 1974 MHz core clock and 8
GB GDDR5X memory with 1809.5 MHz clock rate. The underlying
system consisted of an Intel Core i7-6800K CPU with 64 GB
DDR4-2133 memory running Tensorflow 1.5 on Ubuntu 16.04.



Some Theoretical Results



Linear Affine Kolmogorov Equations

Given ¥ : RY — RIxd W RY — RY affine and initial value
¢:RY =R, find u: Ry x RY - R with

g':(t,x) = %Trace (Z(X)ZT(X)Hessxu(t, X)) + p(x) - Vyu(t, x),
(t,x) €0, T} xR, u(0,x) = o(x).
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Linear Affine Kolmogorov Equations
Given ¥ : RY — RIxd T RY — R affine and initial value
¢:RY - R, find u: Ry x RY = R with
Oou 1 T
E(t,x) = ETrace (Z(X)Z (X)Hessxu(t,x)> + p(x) - Vyu(t, x),
(t,x) € [0, T] xR, u(0,x) = ¢(x).

Includes Black-Scholes Equation with correlations!

Theorem [G-Hornung-Jentzen-Von Wurstenberger (2018)], simplified

version
Suppose that ¢ € H‘(’NO N (or can be well approximated by NNs).
Then for all € > 0 there is ®. with size(®.) < size(y) - €2 and

sup |u(T,x) — Ry(Pe)(x)| <.

x€E|a,b]d

The implicit constant depends at most polynomially on the dimension
d = Np.



Option Pricing without Curse of Dimensionality

Theorem [Berner-G-Jentzen (2018)], very special case

Let p(x) = min{max{max(x; — Kj),0}, R} or
o(x) = min{max{z;j:1 xi — K,0}, R} (or any typical option). Then
for all € > 0 there is . € 7—[5\75“ n,) With size(®.) = O(e2) and

1/2
m </[a b} |u(T, x) = R0(¢6)(X)|2dx> <e.

Such networks can be found by solving the ERM problem with
m ~ e * samples. The implicit constants depend at most
polynomially on the dimension d = Np!



Option Pricing without Curse of Dimensionality

Theorem [Berner-G-Jentzen (2018)], very special case

Let p(x) = min{max{max(x; — Kj),0}, R} or
o(x) = min{max{z;j:1 xi — K,0}, R} (or any typical option). Then
for all € > 0 there is . € 7—[5\75“ n,) With size(®.) = O(e2) and

1/2
m </[a b} |u(T, x) = R0(¢6)(X)|2dx> <e.

Such networks can be found by solving the ERM problem with
m ~ e * samples. The implicit constants depend at most
polynomially on the dimension d = Np!

Due to compositional structure of NNs, all results hold also for
options operating on options...
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Wrap Up

m Several PDEs can be reformulated as learning problem

m Neural network based numerical solution of high-dimensional
PDEs is extremely promising both empirically and
mathematically — and it is possible to prove real theorems!

m Specifically, we can prove that these methods are capable of
overcoming the curse of dimensionality for an important class of
PDEs arising in computational finance.

m We can observe these properties in simulations.



Thank You!

Questions?
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