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Magellan'sJourney
AAugust 10, 1519 September 61522; Start; about 250 men

AReturn: about 20 men

MAGELLAN'S VOYAGE AROUND THE WORLD

Spain

ATLANTIC OCEAN Magellan died here April 27, 1521

-

: Philippine Islan

PACIFIC OCEAN

Strait of Magellan




Introduction- historical overview

The Erdos Number Project

This is the website for the Erdos Number Project, which studies
research collaboration among mathematicians.

The site is maintained by Jerry Grossman at Oakland University. Patrick lon, a
| retired editor at Mathematical Reviews, and Rodrigo De Castro at the

Universidad Nacional de Colombia, Bogota provided assistance in the past.
Please address all comments, additions, and corrections to Jerry at
grossman@oakland.edu.

Erdos numbers have been a part of the folklore of mathematicians
throughout the world for many years. For an introduction to our project, a
description of what Erdés numbers are, what they can be used for, who
cares, and so on, choose the “What's It All About?” link below. To find
out who Paul Erdés is, look at this biography at the MacTutor History of
Mathematics Archive, or choose the “Information about Paul Erdos” link
below. Some useful information can also be found in this Wikipedia
article, which may or may not be totally accurate.

http:/ / www.oakland.edu/ enp
/



Erdos numbe [(1913 -1996)

1 475 papers
0 --- 1 person bap

1--- 504 people
2 --- 6593 people
3 --- 33605 people
4 --- 83642 people
5--- 87760 people
6 --- 40014 people
[/ --- 11591 people
8 --- 3146 people

9 --- 819 people
10 --- 244 people
11 --- 68 people
12 --- 23 people

13 --- 5 people
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Topology

0 5 10

(a) A space (b) A topological space (¢) A metric space



Motivation

Anatoly Fomenkoand Dmitry FuchsHomotopicalTopology,Springer,
(GraduateTexts inMathematics), 2016.

Dimitry Kozloy CombinatorialAlgebraicTopology,Springer,
(Algorithms and Computation athematics), 2008.

Allen Hatcher, Algebraic TopologZambridgdJniversityPress, 2001.
Tomasz Kaczynski, Konstantiischaikow Marian Mrozek,

Computational Homology(Applied Mathematical Sciengesspringer,
2004.



Motivation

AfraJ.Zomorodian Topologyfor Computing,(Cambridge Monographs

on Applied and Computational Mathematjicesmerican Mathematical
Society, 2009.

Steve YOudot, Persistencel heory: From Quiver Representations to

DataAnalysis,(Mathematical Surveys arfdonographs) American
MathematicalSociety, 2017.

Afra J.Zomorodian Advancesan Applied and Computational Topology
(Proceedings of Symposia in Applddthematics), 2012.



Motivation

Herbert Edelsbrunnerand John LHarer, ComputationalTopology: An
Introduction, American Mathematicabociety, 2009.

RobertGhrist, ElementanApplied Topology,2014.



Motivation

JulienTierny, TopologicalData Analysis for Scientific Visualization
(Mathematics and/isualization), Springer, 2018.

JulienTierny, TopologicaData Analysis for Scientifi¢isualization,
(Mathematics and/isualization), Springer, 2017.

Valerio PascucgiXavierTricoche Hans Hagen, Juliehierny,
TopologicalMethods in Data Analysis and Visualization: Theory,
Algorithms, andApplications,(Mathematics and Visualizatipn
Springer2011.



Motivation

GunnarCarlsson Topology andlata, Bull Amer. Math. Soc. 46 (2009),
255-308.

GunnarCarlsson Topological pattern recognition for point cloudata,
ActaNumerica Volume23,May 2014,289¢ 368.



Topologicabpace

A topological space is a setogether with a collectiort

of subsets ofv (i.e., T isa subset of the power set of) satisfying the following
axioms:

1. The emptyset" and Xare inf.

2. The union of any collection of setstfirs also int.

3. The intersection of any finite collection of sets'in
is also int.

The sett is called a topology oX The sets irf are referred to as open sets,
and their complements itXare called closed sets.

A topology specifies "nearness"; an open set is "near" each of its points

A function between topological spaces is said to be continuous if the invers
Image of every open set is open.



Metric Spaces

I YSOUONRO A& | oRAAGIYOSa Fdzy Ol A 2
If Wis a set, then a metric owis a functionQ
o O A

which satisfied the following properties:

Aoty T

Ay Auhw)

AQah) o)  Aadd) (Triangle inequality)
WHQ is called metric space.



From Metric Space to Topological Space

In any metric space we can define the-neighborhoods as the sets of the
form 6 (¢ch) N 0 dad) 1 .

A pointxis an interior point of a seDif there exists an-neighborhood of
xthat Is a subset of

A pointxis a limit point of a seg If every rneighborhood ofxcontains a
pointw win £

A set E is open if all points of E are interior points of E.
A set E Is closed of all limit points of E belong to E.

Theorem: A set is open if and only If its complement is closed.



General Topology Overview

Branches
APointSet Topology
ABased on sets and subsets
AConnectedness
ACompactness
AAlgebraic Topology
ADerived from Combinatorial Topology

AModels topological entities and relationships as algebraic structure
such as groups or a rings

ASmooth Manifold
AMorse theory
AField theory



FlatLand
A Romance of Many Dimensions EDWBBOTT

O day and wight. but this isv wondrous stranve

—_—l 77,,;*52§b»u\

P — A ROMANCE "7 .
porrie OF MANY DIMENSIONS »
By A Square " ] PRINCETON UNIVERSITY PRE

- (/77 e PRINCETOANDOXFORD
e B s 1926

“Fie, fie, how franticly I square my talk!”
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Cyclan topology

AlbrechtDold, Lectureon Algebraiclopology, Springer, 1992.
Edward HSpaniey Algebraic TopologcGrawHill Inc., 1966.
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Perspectives Topology

GunnarCarlsson Topology and Data

Bulletin of The American Mathematical Society, Volu#@, Number
2, April 2009, Pages 26308

A Qualitative information is neededOne important goal of data analysis is to allow the user to
obtain knowledge about the data, i.e. to understand how it is organized on a large scale.

A Metrics are not theoretically justifiedIn physics, the phenomena studied often support clean
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other
hand, this is much less clear. In the biological context, notions of distance are constructed using
some intuitively attractive measures of similarity

A Coordinates are not naturalAlthough we often receive data in the form of vectors of real
numbers, it is frequently the case that the coordinates, like the metrics mentioned above.



Topological approaches to data analysis

Topological approaches to data analysis are based around the notion
that there is an idea of proximity between these data points.

For eacldata pointe @M hw consists of numerical values, we
havea naturaldefinition of proximity that comes from the standard
Euclidean distance: this is the generalizatiomhef standaradistance In

the planeQ(ehe) /B  ®




Example: What Is the shape of the data?

Problem: Discrete points have trivial topology.

22



Data Has Shape
And Shape Hdgeaning

AT %

A , 1}
v !
B

V‘,;*? Y‘“ ‘ <

yprege
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BasiadConcepts of Graph

A4

AGraphs WO

Awxthe set of nodes

A'Qd.the set of edges

AU da nodefrom w

AQU h) dan edge between nodd andv

AE“) dthe adjacencynatrix; 0 p If existsedge between node and
L elseo Tt

A'Q dthe degreeof nodev
AOddegreematrix O QelseO

Ageodesica shortest path between two nodes
A geodesic distance




Graphs

Many data sets can be transformed to a graph representation by
simple meansl bsimilarity graphs

Given:

ARI G achbd KoyiniVa &

Asimilarity valued owho or distance value® ohw
Construct graph:

AData point are vertices of the graph
Al 2y ySOG LR2AYyUOa 6KAOK INB aOf 2aSa

Intuition: graph captures local neighborhoods



Constructing graph
AR | (LB2 AoyoiiBahdy in“Y
ANodesw and w are connected by edge’if @ -

ANodesw and @ are connected bydge ifow is amongQOnearest
neighbors ofw or if @ is amongOnearest neighbors ab



Internet Map
~[lumeta.com]

T Sockd 54 wansde” Schock Dietnct

Friendship Network
[ Moody 0601]

raphs why should we care?

mouth Bass

|Cannibal

18 Tropic Lewveld
Mostly Phytoplanklon 2nd Trophic Lewel
Many Zooplankton

[ Martinez

Protein Interactions
[genomebiology.com]

691]
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Datasets In the form aghatrices- graphs

We are given m objects and n features describing the objects.
(Each object has n numeric values describing it.)

Dataset

An mby-n matrix4,0 aK2g6a 0KS AaAYLIZWNUIFYOSE
objecty.

Every row of4 represents an object.

Goal

We seek to understand the structure of the data, e.g., the underlying
process generating the data.



Images matrices

A collection of images Is represented by afbbymn matrix

n pictures Data mining tasks
4 \ - Cluster or classifynages
N -CAYR aySI NXkai
(pé’ims) A - Feature selection: find a subse
feat
(features) A = colorvalusof ith of features that (accurately)

\_ Ppixelin jthimage J clusters or classifiasnages



Documentterm matrices

A collection of documents is represented by amymn matrix

n documents
( \ Data mining tasks
- Cluster or classify documents
mterms A -CAYR aySI Nbkai
(words) . : :
A; = frequency of-thtermin | - Feature selection: find a subset
j-th document
\ / of terms that (accurately) clusters

or classifies documents.



Market basket matrices

Common representation for association rule mining.

m customers

(

n products

(e.g., milk, bread, wine, etc.)

A

A = quantity of jth product

purchased by theth
customer

Data mining tasks

- Find association rules

E.g., customers who buy
product x buy product y with
probility 89%.

- Such rules are used to make
item display decisions,
advertising decisions, etc



Social networks (mail graph, EceBook,
MySpaceetc.)

Represents the email communications
(relationships) between groups of users.

M users

N users

A

A; = number of emails
exchanged between users i
and j during a certain time
period

Data mining tasks

- cluster the users
-ARSYUATE& ARSY:
of users (denssubgraph}

32



Recommendation systems

The mby-n matrix A represents m customers and n products.

customers

products

A

A = utility of jth product to
th customer

Data mining task

Given a few samples from A,
recommend high utility
products to customers.



Intrusion detection

The mby-n matrix A represents m records and n attributes. The data
for our experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Labs

attributes

( A Data mining task

Reduce noise in the data
records A

A = utility of jth attribute to
i-th record




Tensors: recommendation systems

Economics:
wUtility Is ordinal and not cardinal concepit.

W 2YLI NB LINRBRdzOUAT R2VQU | z\émg,gtogsy .
Recommendation Model Revisited: I |

wEvery customer has anby-n matrix (whose u | ]
entries are +11) and represent paiwise nprofuee — |
product comparisons.

wThere are m such matrices, forming an

n-by-n-by-m 3-mode tensor A.




Data as manifolds

o -- Datum

Low-dimensional
Manifold

Data lie on a low-dimensional manifold. The shape of the
manifold is not known a priori.

36



Reebgraphs

A Reebgraph(named after GeorgeReebby Rene Thom) is a
mathematical object reflecting the evolution of the level sets of a-real
valued function on a manifoldReebgraph is based oRlorsetheory.

Similarconcept was introduced by G.M. Adelsdalskiiand A.S.
Kronrodand applied to analysis of Hilbert's thirteenth problem

Reebgraphs found a wide variety of applications in computational
geometry and computegraphicsincluding computer aided geometric
design, topologibased shapenatching,topological dataanalysis,
topological simplification and cleaning, surface segmentation and

parametrization, efficient computation of level sets, and geometrical
thermodynamics




Reebgraphs

A Schematic way to present a Morse function
A Verticesof the graph areritical points

A Arcsof the graph are connected components of the
level sets of, contractedto points

2l22)



Reeb graphs and genus

A The number of loops in the Reeb graph is equal to
the surface genus

A To count the loops, simplify the graph by contracting
degreel vertices and removing degrekvertices

degree-2



Another Reeb graph example



DiscretizedReebgraph

Acl 1S UKS ONARUOAOIE LIRAYGa YR aa
A Robust because we know that nothing happens between consecutive

critical points
-
=\

41



Reeb graphs for Shape Matching

A Reebgraph encodes the behavior of a Morse function on the shape
A Also tells us about the topology of the shape

A Take a meaningful function and useRsebgraph to compare
between shapes!



Choose the right Morse function

A The height functiori (p) = zis not good enougl not rotational
Invariant

A Not always a Morse function

&




Constant curvature K

Sphere K>0

(K = 1/R2)

Plane K =0

[ [ =180

Pseudosphere

(part of Hyperbolic plane)
K<O0

44



¢ KNBES 3IS2YSUONRSA
and Three models of the Universe

Elliptic

Euclidean

e\
[
o

[ =180

Hyperbolic

K<O0

| [ <180

X



Topology Example Cyclooctane

Cyclooctanas moleculewith formula GH;
Tounderstandmolecularmotion we need
characterizehe Y 2 { S QpdAsildestmpes

Cyclooctandias 24atomsandit canbe viewd
as point in 72limensionakpaces

A. Zomorodian Advandedn Appliedand ComputationallTopology
Proceeding®f Symposia i\ppliedMathematics vol 70, AMS, 2012

46



Topology Example/ @ Of 22 QU0 ySW

ATheconformationspaceof cyclooctands a two-dimensionalsurface
with selfintersection

W. M. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J.-P. Watson. Algorithmic
dimensionality reduction for molecular structure analysis. Journal of Chemical
Physics, 129(6):064118, 2008.

47



Informationgeometry

Alnformation geometry is a branch of mathematics that applies the
techniques of differential geometry to the field of probability theory.
This is done by taking probabillity distributions for a statistical model
as the points of a Riemannian manifold, forming a statistical manifold.

Concept drift adMorse function o
statistical manifold

Shun'ichi Amari, Hiroshi Nagaokislethods of information
geometry Translations of mathematical monographs; v. 191,
American Mathematical Society, 2000




Topology

A Qualitative information is neededOne important goal of data analysis is to allow the user to obtain
knowledge about the data, i.e. to understand how it is organized on a large scale.

A Metrics are not theoretically justified In physics, the phenomena studied often support clean
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other
hand, this is much less clear. In the biological context, notions of distance are constructed using some
intuitively attractive measures of similarity

A Coordinates are not naturalAlthough we often receive data in the form of vectors of real numbers, it
is frequently the case that the coordinates, like the metrics mentioned above

A Summaries are more valuable than individual parametgroices:Onemethod of clustering a point
cloud is the sacalledsingle linkage clusteringnwhich a graph is constructed whose vertex set is the
set ofpoints inthe cloud, and where two such points are connected by an edpeiifdistance is 7 ,
where | is a parameter. Some work in clustering thebas beerdone in trying to determine the
optimal choice of 7 , butitis nowwell understoocthat it is much more informative to maintain the
entire dendogramof the set, which provides a summary of the behavioclastering undeall possible
values of the parametent once. It is therefor@roductive todevelop other mechanisms in which the
behavior of invarianter constructionunder a change of parameters can be effectively summarized.



Topology

ATopology is exactly that branch of mathematics which deals with
gualitative geometrignformation. This includes the study of what the
connected componentsf a space are, but more generally it Is the
study ofconnectivity information which includes the classification of
loops andhigher dimensionasurfaces within the space. This suggests
that extensionsf topologicalmethodologies, such as homology, to
point clouds shoulde helpfulin studying them qualitatively

ATopology studies geometric properties in a way which is much less
sensitive tathe actual choice of metrics than straightforward
geometric methodswhichinvolve sensitive geometric properties
such as curvature.




Topology

ATopology studies only properties of geometric objects which dalapend on
the chosen coordinates, but rather on intrinsic geometric propetighe
objects. As such, it Is coordindiee.

AThe idea of constru,ctin%summaries over whole domains of paranatees
iInvolvesunderstanding the relationship between geometric objembsistructed
from data using various parameter values. The relationswipsh areuseful
iInvolve continuous maps between the different geometric objeatsltherefore
become a manifestation of the notion fafnctoriality, i.e, the notionthat
iInvariants should be related not just to objects being studimd also to the
maps between these objects.

A Functorialityis central inalgebraic topologyn that the functoriality of homological invariants
ISwhat permitsone to compute them from local information, and tHaictoriality is at the
heart of most of the interesting applications within mathematibforeover it is understood

that most of the information aboutopological spacesan be obtained through diagrams of
discrete sets, via a processsimplicialapproximation.



What topology can do?

ACharacterization: Topological properties encapsulate qualitative
signatures e.g. the genus of surface, number of connected
components, give global characteristics important to classification.

AContinuation: Topological features are robust. The number of
components or holes is not something that changes with a small error
of measurement. This is vital to application in scientific disciplines,
where data Is very noisy.



What topology can do?

Alntegration: Topology is the premiere tool for converting local data
Into global properties. Algebraic topology tools (Homology) integrate
local properties to global.

AObstruction: Topology often provides tools for answering feasibility
od certain problems, even the answer to the problems themselves
are hard to compute. These characteristics, classes, degrees, indices,
or obstruction take the form of algebratopological entities.



Topology an Example

Alnput:

AA set of points) sampled from a probabilistic measureon'Y potentially
concentrated on a hidden compad. @, manifold)cw.

AGoal:
A Approximate topological features af

, (e 2
ol s 7 ", o9
1 ALY [ el
. ('Y N e -
t ¢ o
‘\' i\
e
v 4 o :
- i)" . A
~ ,O\
'
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By o
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o
o %1&.\ -

',{r-Y‘ o ,,f.}
(o Bt ol S
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When to uselopological Data Analysis (TDA)?

ATostudy complex higldimensionaldata: feature selections
are not required INfDA.

AExtractingshapes (patterns) afata.
Alnsightsqualitative information is needed.

ASummariesire more valuabléhan individualparameter
choices.



HomologicabensolNetworks

l,

ot (g“‘;, ﬁ‘i‘

1"4\
e SN
qr.b = K =
S— =

R

A network of small, local sensors samples an environment at a set of node
How can one answeglobalquestionsfrom this network of local data?
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High dimensional space

A M £ ol oyt i b S £ o o

/ WA A\

AR

v T
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Dimensionality of Big data

AMany researchers regard the curse of dimensionality as one aspect of
Big Data problems. Indeed, Big Data should®tonstrictedn data
volume, but all take the higdimension characteristic of data into
consideration.

Aln fact, processing higlilimensionaldata is already a tough task in
current scientific research.

AThestate-of-the-art techniques fohandling higkdimensionadata
intuitively fall into dimension reduction. Namely, we try to map the
high-dimensional datapace intdower dimensional space with less
loss of information as possible.




Dimensionality of Big data

AThereare a large number of methods teduce dimensionLinear
mapping methods, such as principal component analysis (PCA) and
factor analysisare populafdinear dimension reduction techniques.
Nonlinear techniques include kernel PCA, manifold learning
technigues suclasisomap locally linear embedding (LLE), Hessian
LLE, Laplaciagenmaps

ARecentlyagenerative deemetworks, calleciuto encoderperform
very well as no#inear dimensionalityeduction.

ARandom projection idimensionality reduction also have beerll-
developed.



Curse of Dimensionality

AThe curse of dimensionality is a term coined by Richard
Bellman to describe the problem caused by the
exponential increase in volume associated with adding
extra dimensions to a space.

ABellman, R.E. 1957. Dynamic Programming. Prince
University Press, Princeton, NJ.

60



Curse of Dimension

AWhen dimensionality 5 35
increases, data becomes 2
Increasingly sparse in 25
the space that it 2
occupies =

A Definitions of density 5
and distance between S|
points, which is critical i
for data mining, become g

less meaningful

- o N W

0 i i

ality

25 10 15 20 25 30 35 40 45 50
Number of dimensions

Randomly generate 500 points

Compute difference between max and min distance between
any pair of points any pair of points



Curse of Dimensionality

The volume of an#imensional sphere o i
with radius r is @ 1 g
3( 0)

Sl Cy

Ratio of the volumes of unit
< Gy sphere and embedding
hypercube of side length

2 up to the dimension 14.

n

dimension



Curse of Dimensionality

The volume of a8 -dimensional sphere with radiusis

T

Ratio of volume o€ -dimensional sphere with
radius 20 volume of circular ring with radiuss1

w i

circular ring with radius 1

wld) wi p
W |




Curse of Dimensionality

2-dimension case

()

- circular ring with radius 1




Curse of Dimensionality

20-dimension case

Y CTm

(p _) e —-e -+ Y (l ) _ circular ring with radius 1




N-dimensional cube

Problem What is the maximum or minimum area of agimensional crossectionof I"?

i 1 2 3 4 5 6 7 S 1 9 |10 11|12
af3.i) | V3 [ V2] 1 h(n,i) denote
a(4.4) 9 2 | V3| 1 the maximum
afb.i) | VB | 77 2 V2 1 area
al6,i) | V6 | 3 | VR 2 | V2| 1
a7, ) | VT 22 272 V8] 2 | V2| 1
a8, 7) NES 4 77 4 Ve 2 V2 1
(9. 7) 3 V2T T 4 | Vs 2 V2
a(10,4) | V10 | 5 7ol VB2 4 VS 2 V2L
a1, [ V11| 72 | 22 |72 | 27 V321 4 [ V8] 2 | V2 1
a(l12,i) | V12 ] 6 8 9 | 77 S V32 4 [ V8] 2 [ V2|1

ChuanmingZong What Is Known About Unit Cubes, Bulletin of The American Mathematical Society
Volume42, Number 2, Pages 1&411, 2005

ChuanmindgZong The Cube: A Window to Convex and Discrete Geometry, Cambridge University
Press 2006



Curse of Dimensionality

AThe rmodekspace iS\EMPTY!

(in huge dimension all volume is in surface)

ADistribution ©f datads uniform!

(in huge dimension all distance is being uniform)



Ultra metrics

68



The Ordinary Absolute Value

Theordinaryabsolute valueonn, EO AAZET AA AO A&l |

g Du O 1
‘ oo T
[& o T

This satisfied the required conditions.



TheRationalsas a Metric Space

v forms a metric space with the ordinary absolute value as our
distance function.

We write this metric space as hs%
If Wis a set, then a metric owis a functionQ
The metrig Q) is defined in the obvious way:

X, o©0A

A4

Quw I B



Cauchy Sequences

A Cauchy sequence in a metric space is a sequence whose elements
0SO2YS aOf2aSda 2 SIOK 20KSNJ®

A seguence S
w oo hoo o E

is called Cauchy if for every positive (real) numodtr  OEAOA EO
integer 0 such that for all natural numbegsid 0 h

Ao ) o | -



Complete Metric Space

We call a metric spaceum complete if every Cauchy sequence in
WHQ converges inHQ

Concrete example: the rational numbers with the ordinary distance
function, v 3 Is not complete.

Example:{¢) o )
php&8hp& pp8 piB



Completing, to gets

If a metric space Is not complete, we can complete it by adding in all
UKS aYAaaAy3da LRZAYyLaAO

For o s, we add all the possible limits of all the possible Cauchy
sequences.

We obtaing 8

It can be proven that the completion of field gives a field.
SETAA o EO A E£EAI Ah a EO Z£EAI A8



The padicAbsolute Value

For each prime, there is associated-adicabsolute value ono 8

Definition. Letr] be any prime number. For any nonzero integer a¢let ©

be the highest power ajj which divides, i.e., the greatesh such that
ok T d € Q

ET OO ETD 610 1 @10 €10 ¢i1 '@

Examples:
E1 QU P,E1L VX TLET BC U



The padicAbsolute Value

Further define absolute valugs on o as follows: N o)

. N W T
SQS :
W T

§'< = ¢

Proposition.s& Is a horm on .

Example:s—s P P8-S PP




Completing, a different way

The padicabsolute value give us ametricon AAAZET AA AU

QY O A
Qafty W Cs

Whenn x we have that 7891 and 2 are closer together than 3 and 2

XPWELS XYW X (8 X pfot O
U (S PS XS X p pfoto




Completing, a different way

The padicabsolute value give us a
metricono AAZET AA AU

QY o O A
Qafty W Cs

Whenn x we have that 7891 and 2 are closer together than 3 and 2

XPWES KAXPBwX (8 X pfot o
U (S PS XS X p ploto




