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Magellan'sJourney
ÅAugust 10, 1519 τSeptember 6, 1522; Start: about 250 men

ÅReturn: about 20 men
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Introduction- historical overview

http:/ / www.oakland.edu/ enp
/
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Erdös number

0 --- 1 person 
1 --- 504 people 
2 --- 6593 people 
3 --- 33605 people 
4 --- 83642 people 
5 --- 87760 people 
6 --- 40014 people 
7 --- 11591 people 
8 --- 3146 people 
9 --- 819 people 

10 --- 244 people 
11 --- 68 people 
12 --- 23 people 
13 --- 5 people

(1913 -1996)

1 475 papers
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Topology
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Motivation

Anatoly Fomenkoand Dmitry Fuchs, HomotopicalTopology, Springer, 
(Graduate Texts in Mathematics), 2016.

Dimitry Kozlov, Combinatorial Algebraic Topology, Springer, 
(Algorithms and Computation in Mathematics), 2008.

Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, 
Computational Homology,(Applied Mathematical Sciences), Springer, 
2004.
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Motivation

Afra J. Zomorodian, Topology for Computing, (Cambridge Monographs 
on Applied and Computational Mathematics), American Mathematical 
Society, 2009.

Steve Y. Oudot, Persistence Theory: From Quiver Representations to 
Data Analysis, (Mathematical Surveys and Monographs), American 
Mathematical Society, 2017.

Afra J. Zomorodian, Advances in Applied and Computational Topology 
(Proceedings of Symposia in Applied Mathematics), 2012.

10



Motivation

Herbert Edelsbrunnerand John L. Harer, Computational Topology: An 
Introduction, American Mathematical Society, 2009.

Robert Ghrist, Elementary Applied Topology, 2014.
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Motivation

Julien Tierny, Topological Data Analysis for Scientific Visualization 
(Mathematics and Visualization), Springer, 2018.

Julien Tierny, Topological Data Analysis for Scientific Visualization, 
(Mathematics and Visualization), Springer, 2017.

Valerio Pascucci, Xavier Tricoche, Hans Hagen, Julien Tierny,
Topological Methods in Data Analysis and Visualization: Theory, 
Algorithms, and Applications, (Mathematics and Visualization), 
Springer,2011.
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Motivation

Gunnar Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009), 
255-308.

Gunnar Carlsson, Topological pattern recognition for point cloud data, 
ActaNumerica, Volume 23, May 2014, 289 ς368.
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A topological space is a set ὢtogether with a collection†
of subsets of ὢ(i.e.,†is a subset of the power set of ὢ) satisfying the following 

axioms: 
1. The empty set ɲ and X are in †. 
2. The union of any collection of sets in †is also in †.
3. The intersection of any finite collection of sets in †
is also in †.

The set †is called a topology on X. The sets in †are referred to as open sets, 
and their complements in Xare called closed sets. 

A topology specifies "nearness"; an open set is "near" each of its points.
A function between topological spaces is said to be continuous if the inverse 

image of every open set is open. 

TopologicalSpace
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Metric Spaces

! ƳŜǘǊƛŎ ƛǎ ŀ αŘƛǎǘŀƴŎŜά ŦǳƴŎǘƛƻƴΣ ŘŜŦƛƴŜŘ ŀǎ ŦƻƭƭƻǿǎΥ

If ὢis a set, then a metric on ὢis a function Ὠ
Ὠȡὢ ὢᴼᴙ

which satisfied the following properties:

ÅὨὼȟὼ π

ÅὨὼȟώ Ὠώȟὼ

ÅὨὼȟώ Ὠώȟᾀ Ὠὼȟᾀ (Triangle inequality)

ὢȟὨ is called metric space.
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In any metric space ὓwe can define the r-neighborhoods as the sets of the 
form  ὄὼȟὶ ώᶰὓȡὨὼȟώ ὶ.

A point x is an interior point of a set Ὁif there exists an r-neighborhood of
x that is a subset of E.

A point x is a limit point of a set E, if every r-neighborhood of x contains a 
point ώ ὼin E.

A set E is open if all points of E are interior points of E.
A set E is closed of all limit points of E belong to E.

Theorem: A set is open if and only if its complement is closed.

From Metric Space to Topological Space
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General Topology Overview
Branches

ÅPoint-Set Topology

ÅBased on sets and subsets

ÅConnectedness

ÅCompactness

ÅAlgebraic Topology

ÅDerived from Combinatorial Topology

ÅModels topological entities and relationships as algebraic structures 
such as groups or a rings 

ÅSmooth Manifold

ÅMorse theory

ÅField theory 17



FlatLand
A Romance of Many Dimensions EDWIN ABBOTT
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PRINCETON UNIVERSITY PRESS 
PRINCETON AND OXFORD 
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Cycle in topology

Albrecht Dold, Lectures on Algebraic Topology, Springer, 1992.
Edward H. Spanier, Algebraic Topology, McGraw-Hill Inc., 1966.
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Perspectives - Topology

Gunnar Carlsson: Topology and Data

Bulletin of The American Mathematical Society, Volume 46, Number 
2, April 2009, Pages 255ς308

ÅQualitative information is needed: One important goal of data analysis is to allow the user to 
obtain knowledge about the data, i.e. to understand how it is organized on a large scale.

ÅMetrics are not theoretically justified: In physics, the phenomena studied often support clean 
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other 
hand, this is much less clear. In the biological context, notions of distance are constructed using 
some intuitively attractive measures of similarity

ÅCoordinates are not natural: Although we often receive data in the form of vectors of real 
numbers, it is frequently the case that the coordinates, like the metrics mentioned above.
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Topological approaches to data analysis

Topological approaches to data analysis are based around the notion 
that there is an idea of proximity between these data points. 

For each data point ● ὼȟȣȟὼ consists of ὲnumerical values, we 
have a natural definition of proximity that comes from the standard 
Euclidean distance: this is the generalization of the standard distance in 

the plane Ὠ●ȟ◐ В ὼ ώ

21



Problem: Discrete points have trivial topology.

Example: What is the shape of the data?
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Data Has Shape

And Shape Has Meaning
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Basic Concepts of Graph

ÅGraphs ' ὠȟὉ
Åὠȡthe set of nodes
ÅὉȡthe set of edges
Åὺȡa nodefrom ὠ
ÅὩὺȟὺȡan edge between node ὺ and ὺ

Åὃȡthe adjacency matrix;ὃ ρif exists edge between node ὺ and 
ὺelse ὃ π

ÅὨȡthe degree of node ὺ

ÅὈȡdegree matrix; Ὀ Ὠelse Ὀ π

Ågeodesic: a shortest path between two nodes
Ågeodesic distance
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Graphs
Many data sets can be transformed to a graph representation by 
simple means: Ҧ similarity graphs

Given:

ÅŘŀǘŀ αǇƻƛƴǘǎά ὼȟȣȟὼ in Ὑ

Åsimilarity values ίὼȟὼ or distance values Ὠὼȟὼ

Construct graph:

ÅData point are vertices of the graph

Å/ƻƴƴŜŎǘ Ǉƻƛƴǘǎ ǿƘƛŎƘ ŀǊŜ αŎƭƻǎŜά

Intuition: graph captures local neighborhoods
25



Constructing graph

ÅŘŀǘŀ αǇƻƛƴǘǎά ὼȟȣȟὼ in Ὑ

ÅNodes ὼand  ὼare connected by edge if ᷆ὼ ὼ᷆ ‐

ÅNodes ὼand  ὼare connected by edge if ὼ is among Ὧnearest 
neighbors of ὼor if ὼ is among Ὧnearest neighbors of ὼ
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Graphs - why should we care?

Internet Map 

[lumeta.com]

Food Web 

[Martinez ô91]

Protein Interactions 

[genomebiology.com]

Friendship Network 

[Moody ô01]
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We are given m objects and n features describing the objects. 
(Each object has n numeric values describing it.)

Dataset
An m-by-n matrix A, ὃ ǎƘƻǿǎ ǘƘŜ άƛƳǇƻǊǘŀƴŎŜέ ƻŦ ŦŜŀǘǳǊŜ j for 

object i.
Every row of A represents an object.

Goal
We seek to understand the structure of the data, e.g., the underlying 
process generating the data.

Datasets in the form of matrices - graphs
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A collection of images is represented by an m-by-n  matrix 

m pixels
(points)
(features)

n pictures 

Aij = color valusof i-th
pixel in j-th image

Data mining tasks
- Cluster or classify images
- CƛƴŘ άƴŜŀǊŜǎǘ ƴŜƛƎƘōƻǊǎέ
- Feature selection: find a subset 
of features that (accurately) 
clusters or classifies images.

Images matrices
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A collection of documents is represented by an m-by-n  matrix 

m terms 
(words)

n documents 

Aij = frequency of i-th term in 
j-th document

Data mining tasks
- Cluster or classify documents
- CƛƴŘ άƴŜŀǊŜǎǘ ƴŜƛƎƘōƻǊǎέ
- Feature selection: find a subset 
of terms that (accurately) clusters 
or classifies documents.

Document-term matrices
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Common representation for association rule mining. 

m customers

n products 
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Data mining tasks
- Find association rules 
E.g., customers who buy 
product x buy product y with 
probility 89%.
- Such rules are used to make 
item display decisions, 
advertising decisions, etc.

Market basket matrices
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Represents the email communications 
(relationships) between groups of users.

m users

n users

Aij = number of emails 
exchanged between users i 
and j during a certain time 
period

Data mining tasks
- cluster the users
-ƛŘŜƴǘƛŦȅ άŘŜƴǎŜέ ƴŜǘǿƻǊƪǎ 
of users (dense subgraphs)

Social networks (e-mail graph, FaceBook, 
MySpace, etc.)
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The m-by-n matrix A represents m customers and n products.

customers

products

Aij = utility of j-th product to i-
th customer

Data mining task
Given a few samples from A, 
recommend high utility 
products to customers.

Recommendation systems
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The m-by-n matrix A represents m records and n attributes. The data 
for our experiments was prepared by the 1998 DARPA intrusion 
detection evaluation program by MIT Lincoln Labs

records

attributes

Aij = utility of j-th attribute to 
i-th record

Data mining task
Reduce noise in the data.

Intrusion detection
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Economics: 
ωUtility is ordinal and not cardinal concept.
ω/ƻƳǇŀǊŜ ǇǊƻŘǳŎǘǎΤ ŘƻƴΩǘ ŀǎǎƛƎƴ ǳǘƛƭƛǘȅ ǾŀƭǳŜǎΦ

Recommendation Model Revisited:
ωEvery customer has an n-by-n matrix (whose      
entries are +1,-1) and represent pair-wise   
product comparisons.
ωThere are m such matrices, forming an     

n-by-n-by-m 3-mode tensor A.

n products

n products

m customers

Tensors: recommendation systems
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Low-dimensional

Manifold

X

Y

Z

-- Datum

ÅData lie on a low-dimensional manifold. The shape of the   

manifold is not known a priori.

Data as manifolds
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Reebgraphs

A Reebgraph (named after Georges Reebby René Thom) is a 
mathematical object reflecting the evolution of the level sets of a real-
valued function on a manifold. Reebgraph is based on Morse theory.

Similar concept was introduced by G.M. Adelson-Velskiiand A.S. 
Kronrodand applied to analysis of Hilbert's thirteenth problem.

Reebgraphs found a wide variety of applications in computational 
geometry and computer graphics, including computer aided geometric 
design, topology-based shape matching, topological data analysis, 
topological simplification and cleaning, surface segmentation and 
parametrization, efficient computation of level sets, and geometrical 
thermodynamics
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Reebgraphs

ÅSchematic way to present a Morse function

ÅVertices of the graph are critical points

ÅArcs of the graph are connected components of the 
level sets of f, contractedto points

2

1

1

1

1

1

0 0 38



Reeb graphs and genus

ÅThe number of loops in the Reeb graph is equal to 
the surface genus

ÅTo count the loops, simplify the graph by contracting 
degree-1 vertices and removing degree-2 vertices

degree-2
39



Another Reeb graph example
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Discretized Reebgraph

Å¢ŀƪŜ ǘƘŜ ŎǊƛǘƛŎŀƭ Ǉƻƛƴǘǎ ŀƴŘ άǎŀƳǇƭŜǎέ ƛƴ ōŜǘǿŜŜƴ

ÅRobust because we know that nothing happens between consecutive 
critical points
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Reeb graphs for Shape Matching

ÅReebgraph encodes the behavior of a  Morse function on the shape

ÅAlso tells us about the topology of the shape

ÅTake a meaningful function and use its Reebgraph to compare 
between shapes!

42



Choose the right Morse function

ÅThe height function f (p) = z is not good enough ςnot rotational 
invariant

ÅNot always a Morse function

43



Constant curvature K

Plane K =0Sphere K>0

(K = 1/R2)

ɔ

ɓ

Ŭ

ɔ

ɓ

Ŭ
ɔ

ɓ

Ŭ

Pseudosphere

(part of Hyperbolic plane)

K<0

‌ ɼ ‎> 180 ‌ ɼ ‎= 180 ‌ ɼ ‎< 180
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¢ƘǊŜŜ ƎŜƻƳŜǘǊƛŜǎ Χ
and Three models of the Universe

Plane K =0 

K > 0

Elliptic         Euclidean      Hyperbolic
(flat)

K = 0 K < 0

‌ ɼ ‎> 180 ‌ ɼ ‎= 180 ‌ ɼ ‎< 180
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Topology Example -- Cyclooctane 

46

Cyclooctaneismoleculewith formulaC8H16

To understandmolecularmotion we need
characterizetheƳƻƭŜŎǳƭŜΨǎpossibleshapes.

Cyclooctanehas 24 atomsand it canbe viewd
as point in 72 dimensionalspaces.

A. Zomorodian. Advandedin Appliedand ComputationalTopology, 
Proceedingsof Symposia in AppliedMathematics, vol 70, AMS, 2012



Topology Example --/ȅŎƭƻƻŎǘŀƴŜΨǎ ǎǇŀŎŜ

47

ÅTheconformationspaceof cyclooctaneisa two-dimensionalsurface
with self intersection.

W. M. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J.-P. Watson. Algorithmic 

dimensionality reduction for molecular structure analysis. Journal of Chemical 

Physics, 129(6):064118, 2008.



Information geometry

ÅInformation geometry is a branch of mathematics that applies the 
techniques of differential geometry to the field of probability theory. 
This is done by taking probability distributions for a statistical model 
as the points of a Riemannian manifold, forming a statistical manifold. 

48

Shun'ichi Amari, Hiroshi Nagaoka - Methods of information 
geometry, Translations of mathematical monographs; v. 191, 
American Mathematical Society, 2000

Concept drift as Morse function on a 
statistical manifold



Topology

ÅQualitative information is needed: One important goal of data analysis is to allow the user to obtain 
knowledge about the data, i.e. to understand how it is organized on a large scale.

ÅMetrics are not theoretically justified: In physics, the phenomena studied often support clean 
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other 
hand, this is much less clear. In the biological context, notions of distance are constructed using some 
intuitively attractive measures of similarity

ÅCoordinates are not natural: Although we often receive data in the form of vectors of real numbers, it 
is frequently the case that the coordinates, like the metrics mentioned above.

ÅSummaries are more valuable than individual parameter choices: One method of clustering a point 
cloud is the so-called single linkage clustering, in which a graph is constructed whose vertex set is the 
set of points in the cloud, and where two such points are connected by an edge if their distance is ‭, 
where  ‭is a parameter. Some work in clustering theory has been done in trying to determine the 
optimal choice of  ‭, but it is now well understood that it is much more informative to maintain the 
entire dendogramof the set, which provides a summary of the behavior of clustering under all possible 
values of the parameter at once. It is therefore productive to develop other mechanisms in which the 
behavior of invariants or construction under a change of parameters can be effectively summarized.
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Topology

ÅTopology is exactly that branch of mathematics which deals with 
qualitative geometric information. This includes the study of what the 
connected components of a space are, but more generally it is the 
study of connectivity information, which includes the classification of 
loops and higher dimensional surfaces within the space. This suggests 
that extensions of topological methodologies, such as homology, to 
point clouds should be helpful in studying them qualitatively.

ÅTopology studies geometric properties in a way which is much less 
sensitive to the actual choice of metrics than straightforward 
geometric methods, which involve sensitive geometric properties 
such as curvature.
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Topology

ÅTopology studies only properties of geometric objects which do not depend on 
the chosen coordinates, but rather on intrinsic geometric properties of the 
objects. As such, it is coordinate-free.

ÅThe idea of constructing summaries over whole domains of parameter values 
involves understanding the relationship between geometric objects constructed 
from data using various parameter values. The relationships which are useful 
involve continuous maps between the different geometric objects, and therefore 
become a manifestation of the notion of functoriality, i.e, the notion that 
invariants should be related not just to objects being studied, but also to the 
maps between these objects. 
ÅFunctorialityis central in algebraic topology in that the functorialityof homological invariants 

is what permits one to compute them from local information, and that functoriality is at the 
heart of most of the interesting applications within mathematics. Moreover, it is understood 
that most of the information about topological spaces can be obtained through diagrams of 
discrete sets, via a process of simplicialapproximation.
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What topology can do?

ÅCharacterization: Topological properties encapsulate qualitative 
signatures e.g. the genus of surface, number of connected 
components, give global characteristics important to classification.

ÅContinuation: Topological features are robust. The number of 
components or holes is not something that changes with a small error 
of measurement. This is vital to application in scientific disciplines, 
where data is very noisy.
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What topology can do?

ÅIntegration: Topology is the premiere tool for converting local data 
into global properties. Algebraic topology tools (Homology) integrate 
local properties to global.

ÅObstruction: Topology often provides tools for answering feasibility 
od certain problems, even the answer to the problems themselves 
are hard to compute. These characteristics, classes, degrees, indices, 
or obstruction take the form of algebraic-topological entities.

53



Topology an Example

ÅInput: 
ÅA set of points ὖsampled from a probabilistic measure ‘on Ὑ potentially 

concentrated on a hidden compact (e.g, manifold) ὢ. 

ÅGoal: 
ÅApproximate topological features of ὢ
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When to use Topological Data Analysis (TDA)?

ÅTo study complex high-dimensional data: feature selections 
are not required in TDA.

ÅExtracting shapes (patterns) of data.

ÅInsights qualitative information is needed.

ÅSummaries are more valuable than individual parameter 
choices.
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Homological SensorNetworks

A network of small, local sensors samples an environment at a set of nodes. 
How can one answer globalquestions from this network of local data?
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High dimensional space

57



Dimensionality of Big data

ÅMany researchers regard the curse of dimensionality as one aspect of 
Big Data problems. Indeed, Big Data should not be constricted in data 
volume, but all take the high-dimension characteristic of data into 
consideration. 

ÅIn fact, processing high-dimensional data is already a tough task in 
current scientific research. 

ÅThe state-of-the-art techniques for handling high-dimensional data 
intuitively fall into dimension reduction. Namely, we try to map the 
high-dimensional data space into lower dimensional space with less 
loss of information as possible. 
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Dimensionality of Big data

ÅThere are a large number of methods to reduce dimension. Linear 
mapping methods, such as principal component analysis (PCA) and 
factor analysis, are popular linear dimension reduction techniques. 
Non-linear techniques include kernel PCA, manifold learning 
techniques such as Isomap, locally linear embedding (LLE), Hessian 
LLE, Laplacian eigenmaps. 

ÅRecently, a generative deep networks, called auto encoder, perform 
very well as non-linear dimensionality reduction.

ÅRandom projection in dimensionality reduction also have been well-
developed.
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Curse of Dimensionality

ÅThe curse of dimensionality is a term coined by Richard 
Bellman to describe the problem caused by the 
exponential increase in volume associated with adding 
extra dimensions to a space.

ÅBellman, R.E. 1957. Dynamic Programming. Princeton 
University Press, Princeton, NJ. 
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Curse of Dimensionality

ÅWhen dimensionality 
increases, data becomes 
increasingly sparse in 
the space that it 
occupies

ÅDefinitions of density 
and distance between 
points, which is critical 
for data mining, become 
less meaningful

61

Randomly generate 500 points

Compute difference between max and min distance between 
any pair of points any pair of points



Curse of Dimensionality
The volume of an n-dimensional sphere 
with radius r is

dimension

Ratio of the volumes of unit 
sphere and embedding 
hypercube of side length
2 up to the dimension 14.

62
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Curse of Dimensionality

The volume of an ὲ-dimensional sphere with radius ὶis

ὠ ὶ
“ὶ

ɜ
ὲ
ς
ρ

Ratio of volume of ὲ-dimensional sphere with 
radius 20 volume of circular ring with radius 1is

circular ring with radius 1
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Curse of Dimensionality
2-dimension case

64

Ὑ ςπ

circular ring with radius 1



Curse of Dimensionality
20-dimension case
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Ὑ ςπ

ρ ρ

ρ ḙ ḙ ᵼὙ ὶ circular ring with radius 1



N-dimensional cube
Problem. What is the maximum or minimum area of an i-dimensional crosssectionof In?

ChuanmingZong, What Is Known About Unit Cubes, Bulletin of The American Mathematical Society, 
Volume42, Number 2, Pages 181ς211, 2005
ChuanmingZong, The Cube: A Window to Convex and Discrete Geometry, Cambridge University 
Press 2006 66

(hn, i) denote 
the maximum 
area



Curse of Dimensionality

ÅThe model space is EMPTY!
(in huge dimension all volume is in surface)

ÅDistribution of data is uniform!
(in huge dimension all distance is being uniform)
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Ultra metrics
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The Ordinary Absolute Value

The ordinary absolute value on ᴗ ÉÓ ÄÅÆÉÎÅÄ ÁÓ ÆÏÌÌÏ×Óȡ

ȢḊᴗᴼᴙ

ὼ
ὼȡὼ π
ὼȡὼ π

This satisfied the required conditions.
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The Rationalsas a Metric Space

ᴗforms a metric space with the ordinary absolute value as our 
distance function.

We write this metric space as ᴗȟȿȢȿ

If ὢis a set, then a metric on ὢis a function Ὠ

The metric, Ὠ, is defined in the obvious way:

Ὠȡᴗ ᴗᴼᴙ
Ὠὼȟώ ȿὼ ώȿ
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Cauchy Sequences

A Cauchy sequence in a metric space is a sequence whose elements 
ōŜŎƻƳŜ αŎƭƻǎŜά ǘƻ ŜŀŎƘ ƻǘƘŜǊΦ

A sequence 
ὼȟὼȟὼȟὼỄ

is called Cauchy if for every positive (real) number ʀȟ ÔÈÅÒÅ ÉÓ Á ÐÏÓÉÔÉÖÅ 
integer  ὔsuch that for all natural numbers ὲȟά ὔȟ

Ὠὼȟὼ ὼȟὼ ‐
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Complete Metric Space

We call a metric space ὢȟὨ complete if every Cauchy sequence in 
ὢȟὨ converges in ὢȟὨ

Concrete example: the rational numbers with the ordinary distance 
function, ᴗȟȿȢȿis not complete.

Example: (ς)
ρȟρȢτȟρȢτρȟρȢτρτȟȣ
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Completing ᴗ to get ᴙ

If a metric space is not complete, we can complete it by adding in all 
ǘƘŜ αƳƛǎǎƛƴƎά ǇƻƛƴǘǎΦ

For ᴗȟȿȢȿ, we add all the possible limits of all the possible Cauchy 
sequences.

We obtain ᴙȢ

It can be proven that the completion of field gives a field.

3ÉÎÃÅ ᴗ ÉÓ Á ÆÉÅÌÄȟ ᴙ ÉÓ ÆÉÅÌÄȢ
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The p-adicAbsolute Value

For each prime ὴ, there is associated p-adicabsolute value ȿȢȿon ᴗȢ

Definition. Let ὴbe any prime number. For any nonzero integer a, let έὶὨὥ
be the highest power of ὴwhich divides ὥ, i.e.,  the greatest άsuch that 
ὥḳπάέὨὴ . 

έὶὨὥὦ έὶὨὥ έὶὨὦ,        έὶὨὥȾὦ έὶὨὥ έὶὨὦ,

Examples:

έὶὨσυ ρ, έὶὨχχ π, έὶὨσς υ
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The p-adicAbsolute Value

Further define absolute value ȿȢȿon ᴗ as follows: (ὥᶰᴗ)

ȿὥȿ
ὴ ȟ ὥ π

πȟ ὥ π

Proposition. ȿȢȿis a norm on ᴗ .

Example:  ȿ ȿ ȿρρȢ ȿ ρρ
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Completing ᴗ a different way

The p-adicabsolute value give us a metric on ᴗ ÄÅÆÉÎÅÄ ÂÙ

Ὠȡᴗ ᴗᴼᴙ
Ὠὼȟώ ȿὼ ώȿ

When  ὴ χwe have that 7891 and 2 are closer together than 3 and 2

ȿχψωρςȿ ȿχψψωȿ ȿχ ςσȿ χ ρȾστσ
ȿσ ςȿ ȿρȿ ȿχȿ χ ρ ρȾστσ
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Completing ᴗ a different way

The p-adicabsolute value give us a 

metric on ᴗ ÄÅÆÉÎÅÄ ÂÙ

Ὠȡᴗ ᴗᴼᴙ
Ὠὼȟώ ȿὼ ώȿ

When  ὴ χwe have that 7891 and 2 are closer together than 3 and 2

ȿχψωρςȿ ȿχψψωȿ ȿχ ςσȿ χ ρȾστσ
ȿσ ςȿ ȿρȿ ȿχȿ χ ρ ρȾστσ
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