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Magellan's Journey
• August 10, 1519 — September 6, 1522; Start: about 250 men

• Return: about 20 men
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Introduction - historical overview

http:/ / www.oakland.edu/ enp
/
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Erdös number

0 --- 1 person 
1 --- 504 people 
2 --- 6593 people 
3 --- 33605 people 
4 --- 83642 people 
5 --- 87760 people 
6 --- 40014 people 
7 --- 11591 people 
8 --- 3146 people 
9 --- 819 people 

10 --- 244 people 
11 --- 68 people 
12 --- 23 people 
13 --- 5 people

(1913-1996)

1 475 papers
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Topology
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Motivation

Anatoly Fomenko and Dmitry Fuchs, Homotopical Topology, Springer, 
(Graduate Texts in Mathematics), 2016.

Dimitry Kozlov, Combinatorial Algebraic Topology, Springer, 
(Algorithms and Computation in Mathematics), 2008.

Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, 
Computational Homology, (Applied Mathematical Sciences), Springer, 
2004.
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Motivation

Afra J. Zomorodian, Topology for Computing, (Cambridge Monographs 
on Applied and Computational Mathematics), American Mathematical 
Society, 2009.

Steve Y. Oudot, Persistence Theory: From Quiver Representations to 
Data Analysis, (Mathematical Surveys and Monographs), American 
Mathematical Society, 2017.

Afra J. Zomorodian, Advances in Applied and Computational Topology 
(Proceedings of Symposia in Applied Mathematics), 2012.
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Motivation

Herbert Edelsbrunner and John L. Harer, Computational Topology: An 
Introduction, American Mathematical Society, 2009.

Robert Ghrist, Elementary Applied Topology, 2014.
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Motivation

Julien Tierny, Topological Data Analysis for Scientific Visualization 
(Mathematics and Visualization), Springer, 2018.

Julien Tierny, Topological Data Analysis for Scientific Visualization, 
(Mathematics and Visualization), Springer, 2017.

Valerio Pascucci, Xavier Tricoche, Hans Hagen, Julien Tierny,
Topological Methods in Data Analysis and Visualization: Theory, 
Algorithms, and Applications, (Mathematics and Visualization), 
Springer, 2011.
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Motivation

Gunnar Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009), 
255-308.

Gunnar Carlsson, Topological pattern recognition for point cloud data, 
Acta Numerica, Volume 23, May 2014, 289 – 368.
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A topological space is a set 𝑋 together with a collection 𝜏
of subsets of 𝑋 (i.e., 𝜏 is a subset of the power set of 𝑋) satisfying the following 

axioms: 
1. The empty set ∅ and X are in 𝜏. 
2. The union of any collection of sets in 𝜏 is also in 𝜏.
3. The intersection of any finite collection of sets in 𝜏

is also in 𝜏.

The set 𝜏 is called a topology on X. The sets in 𝜏 are referred to as open sets, 
and their complements in X are called closed sets. 

A topology specifies "nearness"; an open set is "near" each of its points.
A function between topological spaces is said to be continuous if the inverse 

image of every open set is open. 

Topological Space
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Metric Spaces

A metric is a „distance“ function, defined as follows:

If 𝑋 is a set, then a metric on 𝑋 is a function 𝑑
𝑑: 𝑋 × 𝑋 → ℝ+

which satisfied the following properties:

• 𝑑 𝑥, 𝑥 ≥ 0

• 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

• 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑 𝑥, 𝑧 (Triangle inequality)

(𝑋, 𝑑) is called metric space.
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In any metric space 𝑀 we can define the r-neighborhoods as the sets of the 
form  𝐵 𝑥, 𝑟 = {𝑦 ∈ 𝑀: 𝑑 𝑥, 𝑦 < 𝑟}.

A point x is an interior point of a set 𝐸 if there exists an r-neighborhood of
x that is a subset of E.

A point x is a limit point of a set E, if every r-neighborhood of x contains a 
point 𝑦 ≠ 𝑥 in E.

A set E is open if all points of E are interior points of E.
A set E is closed of all limit points of E belong to E.

Theorem: A set is open if and only if its complement is closed.

From Metric Space to Topological Space

16



General Topology Overview
Branches

• Point-Set Topology

• Based on sets and subsets

• Connectedness

• Compactness

• Algebraic Topology

• Derived from Combinatorial Topology

• Models topological entities and relationships as algebraic structures 
such as groups or a rings 

• Smooth Manifold

• Morse theory

• Field theory 17



FlatLand
A Romance of Many Dimensions EDWIN ABBOTT
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Cycle in topology

Albrecht Dold, Lectures on Algebraic Topology, Springer, 1992.
Edward H. Spanier, Algebraic Topology, McGraw-Hill Inc., 1966.
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Perspectives - Topology

Gunnar Carlsson: Topology and Data

Bulletin of The American Mathematical Society, Volume 46, Number 
2, April 2009, Pages 255–308

• Qualitative information is needed: One important goal of data analysis is to allow the user to 
obtain knowledge about the data, i.e. to understand how it is organized on a large scale.

• Metrics are not theoretically justified: In physics, the phenomena studied often support clean 
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other 
hand, this is much less clear. In the biological context, notions of distance are constructed using 
some intuitively attractive measures of similarity

• Coordinates are not natural: Although we often receive data in the form of vectors of real 
numbers, it is frequently the case that the coordinates, like the metrics mentioned above.
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Topological approaches to data analysis

Topological approaches to data analysis are based around the notion 
that there is an idea of proximity between these data points. 

For each data point 𝒙 = (𝑥1, … , 𝑥𝑛) consists of 𝑛 numerical values, we 
have a natural definition of proximity that comes from the standard 
Euclidean distance: this is the generalization of the standard distance in 

the plane 𝑑 𝒙, 𝒚 = σ𝑖=1
𝑛 (𝑥𝑖 − 𝑦𝑖)2
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Problem: Discrete points have trivial topology.

Example: What is the shape of the data?

22



Data Has Shape

And Shape Has Meaning
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Basic Concepts of Graph

• Graphs G = (𝑉, 𝐸)
• 𝑉: the set of nodes
• 𝐸: the set of edges
• 𝑣𝑖: a node from 𝑉
• 𝑒(𝑣𝑖 , 𝑣𝑗): an edge between node 𝑣𝑖 and 𝑣𝑗

• 𝐴: the adjacency matrix; 𝐴𝑖𝑗 = 1 if exists edge between node 𝑣𝑖 and 
𝑣𝑗 else 𝐴𝑖𝑗 = 0

• 𝑑𝑖: the degree of node 𝑣𝑖

• 𝐷: degree matrix; 𝐷𝑖𝑖 = 𝑑𝑖 else 𝐷𝑖𝑗 = 0

• geodesic: a shortest path between two nodes
• geodesic distance

24



Graphs
Many data sets can be transformed to a graph representation by 
simple means: → similarity graphs

Given:

• data „points“ 𝑥1, … , 𝑥𝑛 in 𝑅𝑚

• similarity values 𝑠(𝑥𝑖 , 𝑥𝑗) or distance values 𝑑(𝑥𝑖 , 𝑥𝑗)

Construct graph:

• Data point are vertices of the graph

• Connect points which are „close“

Intuition: graph captures local neighborhoods
25



Constructing graph

• data „points“ 𝑥1, … , 𝑥𝑛 in 𝑅𝑚

• Nodes 𝑥𝑖 and  𝑥𝑗 are connected by edge if ∥ 𝑥𝑖 − 𝑥𝑗 ∥2< 𝜀

• Nodes 𝑥𝑖 and  𝑥𝑗 are connected by edge if 𝑥𝑖 is among 𝑘 nearest 
neighbors of 𝑥𝑗 or if 𝑥𝑗 is among 𝑘 nearest neighbors of 𝑥𝑖

26



Graphs - why should we care?

Internet Map 

[lumeta.com]

Food Web 

[Martinez ’91]

Protein Interactions 

[genomebiology.com]

Friendship Network 

[Moody ’01]
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We are given m objects and n features describing the objects. 
(Each object has n numeric values describing it.)

Dataset
An m-by-n matrix A, 𝐴𝑖𝑗 shows the “importance” of feature j for 

object i.
Every row of A represents an object.

Goal
We seek to understand the structure of the data, e.g., the underlying 
process generating the data.

Datasets in the form of matrices - graphs

28



A collection of images is represented by an m-by-n  matrix 

m pixels
(points)
(features)

n pictures 

Aij = color valus of i-th
pixel in j-th image

Data mining tasks
- Cluster or classify images
- Find “nearest neighbors”
- Feature selection: find a subset 
of features that (accurately) 
clusters or classifies images.

Images matrices
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A collection of documents is represented by an m-by-n  matrix 

m terms 
(words)

n documents 

Aij = frequency of i-th term in 
j-th document

Data mining tasks
- Cluster or classify documents
- Find “nearest neighbors”
- Feature selection: find a subset 
of terms that (accurately) clusters 
or classifies documents.

Document-term matrices
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Common representation for association rule mining. 

m customers

n products 
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Data mining tasks
- Find association rules 
E.g., customers who buy 
product x buy product y with 
probility 89%.
- Such rules are used to make 
item display decisions, 
advertising decisions, etc.

Market basket matrices
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Represents the email communications 
(relationships) between groups of users.

m users

n users

Aij = number of emails 
exchanged between users i 
and j during a certain time 
period

Data mining tasks
- cluster the users
- identify “dense” networks 
of users (dense subgraphs)

Social networks (e-mail graph, FaceBook, 
MySpace, etc.)

32



The m-by-n matrix A represents m customers and n products.

customers

products

Aij = utility of j-th product to i-
th customer

Data mining task
Given a few samples from A, 
recommend high utility 
products to customers.

Recommendation systems
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The m-by-n matrix A represents m records and n attributes. The data 
for our experiments was prepared by the 1998 DARPA intrusion 
detection evaluation program by MIT Lincoln Labs

records

attributes

Aij = utility of j-th attribute to 
i-th record

Data mining task
Reduce noise in the data.

Intrusion detection
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Economics: 
• Utility is ordinal and not cardinal concept.
• Compare products; don’t assign utility values.

Recommendation Model Revisited:
• Every customer has an n-by-n matrix (whose      
entries are +1,-1) and represent pair-wise   
product comparisons.
• There are m such matrices, forming an     

n-by-n-by-m 3-mode tensor A.

n products

n products

m customers

Tensors: recommendation systems
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Low-dimensional

Manifold

X

Y

Z

-- Datum

• Data lie on a low-dimensional manifold. The shape of the   

manifold is not known a priori.

Data as manifolds
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Reeb graphs

A Reeb graph (named after Georges Reeb by René Thom) is a 
mathematical object reflecting the evolution of the level sets of a real-
valued function on a manifold. Reeb graph is based on Morse theory.

Similar concept was introduced by G.M. Adelson-Velskii and A.S. 
Kronrod and applied to analysis of Hilbert's thirteenth problem.

Reeb graphs found a wide variety of applications in computational 
geometry and computer graphics, including computer aided geometric 
design, topology-based shape matching, topological data analysis, 
topological simplification and cleaning, surface segmentation and 
parametrization, efficient computation of level sets, and geometrical 
thermodynamics
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Reeb graphs

• Schematic way to present a Morse function

• Vertices of the graph are critical points

• Arcs of the graph are connected components of the 
level sets of f, contracted to points

2

1

1

1

1

1

0 0 38



Reeb graphs and genus

• The number of loops in the Reeb graph is equal to 
the surface genus

• To count the loops, simplify the graph by contracting 
degree-1 vertices and removing degree-2 vertices

degree-2
39



Another Reeb graph example
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Discretized Reeb graph

• Take the critical points and “samples” in between

• Robust because we know that nothing happens between consecutive 
critical points
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Reeb graphs for Shape Matching

• Reeb graph encodes the behavior of a  Morse function on the shape

• Also tells us about the topology of the shape

• Take a meaningful function and use its Reeb graph to compare 
between shapes!

42



Choose the right Morse function

• The height function f (p) = z is not good enough – not rotational 
invariant

• Not always a Morse function
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Constant curvature K

Plane K =0Sphere K>0

(K = 1/R2)

γ

β

α

γ

β

α
γ

β

α

Pseudosphere

(part of Hyperbolic plane)

K<0

𝛼 + β + 𝛾 > 180 𝛼 + β + 𝛾 = 180 𝛼 + β + 𝛾 < 180

44



Three geometries …
and Three models of the Universe

Plane K =0 

K > 0

Elliptic         Euclidean      Hyperbolic
(flat)

K = 0 K < 0

𝛼 + β + 𝛾 > 180 𝛼 + β + 𝛾 = 180 𝛼 + β + 𝛾 < 180
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Topology Example -- Cyclooctane 

46

Cyclooctane is molecule with formula C8H16

To understand molecular motion we need
characterize the molecule‘s possible shapes.

Cyclooctane has 24 atoms and it can be viewd
as point in 72 dimensional spaces.

A. Zomorodian. Advanded in Applied and Computational Topology, 
Proceedings of Symposia in Applied Mathematics, vol 70, AMS, 2012



Topology Example -- Cyclooctane‘s space

47

• The conformation space of cyclooctane is a two-dimensional surface
with self intersection.

W. M. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J.-P. Watson. Algorithmic 

dimensionality reduction for molecular structure analysis. Journal of Chemical 

Physics, 129(6):064118, 2008.



Information geometry

• Information geometry is a branch of mathematics that applies the 
techniques of differential geometry to the field of probability theory. 
This is done by taking probability distributions for a statistical model 
as the points of a Riemannian manifold, forming a statistical manifold. 

48

Shun'ichi Amari, Hiroshi Nagaoka - Methods of information 
geometry, Translations of mathematical monographs; v. 191, 
American Mathematical Society, 2000

Concept drift as Morse function on a 
statistical manifold



Topology

• Qualitative information is needed: One important goal of data analysis is to allow the user to obtain 
knowledge about the data, i.e. to understand how it is organized on a large scale.

• Metrics are not theoretically justified: In physics, the phenomena studied often support clean 
explanatory theories which tell one exactly hat metric to use. In biological problems, on the other 
hand, this is much less clear. In the biological context, notions of distance are constructed using some 
intuitively attractive measures of similarity

• Coordinates are not natural: Although we often receive data in the form of vectors of real numbers, it 
is frequently the case that the coordinates, like the metrics mentioned above.

• Summaries are more valuable than individual parameter choices: One method of clustering a point 
cloud is the so-called single linkage clustering, in which a graph is constructed whose vertex set is the 
set of points in the cloud, and where two such points are connected by an edge if their distance is ≤ 𝜖 , 
where  𝜖 is a parameter. Some work in clustering theory has been done in trying to determine the 
optimal choice of  ≤ 𝜖 , but it is now well understood that it is much more informative to maintain the 
entire dendogram of the set, which provides a summary of the behavior of clustering under all possible 
values of the parameter at once. It is therefore productive to develop other mechanisms in which the 
behavior of invariants or construction under a change of parameters can be effectively summarized.
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Topology

• Topology is exactly that branch of mathematics which deals with 
qualitative geometric information. This includes the study of what the 
connected components of a space are, but more generally it is the 
study of connectivity information, which includes the classification of 
loops and higher dimensional surfaces within the space. This suggests 
that extensions of topological methodologies, such as homology, to 
point clouds should be helpful in studying them qualitatively.

• Topology studies geometric properties in a way which is much less 
sensitive to the actual choice of metrics than straightforward 
geometric methods, which involve sensitive geometric properties 
such as curvature.
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Topology

• Topology studies only properties of geometric objects which do not depend on 
the chosen coordinates, but rather on intrinsic geometric properties of the 
objects. As such, it is coordinate-free.

• The idea of constructing summaries over whole domains of parameter values 
involves understanding the relationship between geometric objects constructed 
from data using various parameter values. The relationships which are useful 
involve continuous maps between the different geometric objects, and therefore 
become a manifestation of the notion of functoriality, i.e, the notion that 
invariants should be related not just to objects being studied, but also to the 
maps between these objects. 

• Functoriality is central in algebraic topology in that the functoriality of homological invariants 
is what permits one to compute them from local information, and that functoriality is at the 
heart of most of the interesting applications within mathematics. Moreover, it is understood 
that most of the information about topological spaces can be obtained through diagrams of 
discrete sets, via a process of simplicial approximation.
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What topology can do?

• Characterization: Topological properties encapsulate qualitative 
signatures e.g. the genus of surface, number of connected 
components, give global characteristics important to classification.

• Continuation: Topological features are robust. The number of 
components or holes is not something that changes with a small error 
of measurement. This is vital to application in scientific disciplines, 
where data is very noisy.
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What topology can do?

• Integration: Topology is the premiere tool for converting local data 
into global properties. Algebraic topology tools (Homology) integrate 
local properties to global.

• Obstruction: Topology often provides tools for answering feasibility 
od certain problems, even the answer to the problems themselves 
are hard to compute. These characteristics, classes, degrees, indices, 
or obstruction take the form of algebraic-topological entities.
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Topology an Example

• Input: 
• A set of points 𝑃 sampled from a probabilistic measure 𝜇 on 𝑅𝑑 potentially 

concentrated on a hidden compact (e.g, manifold) 𝑋. 

• Goal: 
• Approximate topological features of 𝑋
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When to use Topological Data Analysis (TDA)?

• To study complex high-dimensional data: feature selections 
are not required in TDA.

• Extracting shapes (patterns) of data.

• Insights qualitative information is needed.

• Summaries are more valuable than individual parameter 
choices.
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Homological Sensor Networks

A network of small, local sensors samples an environment at a set of nodes. 
How can one answer global questions from this network of local data?
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High dimensional space

57



Dimensionality of Big data

• Many researchers regard the curse of dimensionality as one aspect of 
Big Data problems. Indeed, Big Data should not be constricted in data 
volume, but all take the high-dimension characteristic of data into 
consideration. 

• In fact, processing high-dimensional data is already a tough task in 
current scientific research. 

• The state-of-the-art techniques for handling high-dimensional data 
intuitively fall into dimension reduction. Namely, we try to map the 
high-dimensional data space into lower dimensional space with less 
loss of information as possible. 
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Dimensionality of Big data

• There are a large number of methods to reduce dimension. Linear 
mapping methods, such as principal component analysis (PCA) and 
factor analysis, are popular linear dimension reduction techniques. 
Non-linear techniques include kernel PCA, manifold learning 
techniques such as Isomap, locally linear embedding (LLE), Hessian 
LLE, Laplacian eigenmaps. 

• Recently, a generative deep networks, called auto encoder, perform 
very well as non-linear dimensionality reduction.

• Random projection in dimensionality reduction also have been well-
developed.
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Curse of Dimensionality

• The curse of dimensionality is a term coined by Richard 
Bellman to describe the problem caused by the 
exponential increase in volume associated with adding 
extra dimensions to a space.

• Bellman, R.E. 1957. Dynamic Programming. Princeton 
University Press, Princeton, NJ. 
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Curse of Dimensionality

• When dimensionality 
increases, data becomes 
increasingly sparse in 
the space that it 
occupies

• Definitions of density 
and distance between 
points, which is critical 
for data mining, become 
less meaningful

61

Randomly generate 500 points

Compute difference between max and min distance between 
any pair of points any pair of points



Curse of Dimensionality
The volume of an n-dimensional sphere 
with radius r is

dimension

Ratio of the volumes of unit 
sphere and embedding 
hypercube of side length
2 up to the dimension 14.

62

𝑉𝑛(𝑟) =
𝜋

𝑛
2𝑟𝑛

Γ
𝑛
2 + 1



Curse of Dimensionality

The volume of an 𝑛-dimensional sphere with radius 𝑟 is

𝑉𝑛(𝑟) =
𝜋

𝑛
2𝑟𝑛

Γ
𝑛
2

+ 1

Ratio of volume of 𝑛-dimensional sphere with 
radius 20 volume of circular ring with radius 1 is

circular ring with radius 1

63

𝑅𝑛(𝑟) =
𝑉𝑛 𝑟 − 𝑉𝑛(𝑟 − 1)

𝑉𝑛(𝑟)



Curse of Dimensionality
2-dimension case

64

𝑅2(20) =
𝑉2 20 −𝑉2(19)

𝑉2(20)
=

202−192

202 =

=
202−(20−1)2

202 =
1

10
circular ring with radius 1



Curse of Dimensionality
20-dimension case

65

𝑅20(20) =
𝑉20 20 −𝑉20(19)

𝑉20(20)
=

2020−1920

2020 =

=
2020−(20−1)20

2020 = 1 − 1 −
1

20

20

1 −
1

20

20
≅

1

𝑒
≅

1

3
⇒ 𝑅20 𝑟 =

2

3
circular ring with radius 1



N-dimensional cube
Problem. What is the maximum or minimum area of an i-dimensional cross section of In?

Chuanming Zong, What Is Known About Unit Cubes, Bulletin of The American Mathematical Society, 
Volume 42, Number 2, Pages 181–211, 2005
Chuanming Zong, The Cube: A Window to Convex and Discrete Geometry, Cambridge University 
Press 2006 66

α(n, i) denote 
the maximum 
area



Curse of Dimensionality

•The model space is EMPTY!
(in huge dimension all volume is in surface)

•Distribution of data is uniform!
(in huge dimension all distance is being uniform)
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Ultra metrics
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The Ordinary Absolute Value

The ordinary absolute value on ℚ is defined as follows:

. ∶ ℚ → ℝ+

𝑥 = ቊ
𝑥: 𝑥 ≥ 0

−𝑥: 𝑥 < 0

This satisfied the required conditions.
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The Rationals as a Metric Space

ℚ forms a metric space with the ordinary absolute value as our 
distance function.

We write this metric space as (ℚ, |. |)

If 𝑋 is a set, then a metric on 𝑋 is a function 𝑑

The metric, 𝑑, is defined in the obvious way:

𝑑: ℚ × ℚ → ℝ+
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|
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Cauchy Sequences

A Cauchy sequence in a metric space is a sequence whose elements 
become „close“ to each other.

A sequence 
𝑥1, 𝑥2, 𝑥3, 𝑥4 ⋯

is called Cauchy if for every positive (real) number ε, there is a positive 
integer  𝑁 such that for all natural numbers 𝑛, 𝑚 > 𝑁,

𝑑 𝑥𝑚, 𝑥𝑛 = 𝑥𝑚, 𝑥𝑛 < 𝜀
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Complete Metric Space

We call a metric space (𝑋, 𝑑) complete if every Cauchy sequence in 
(𝑋, 𝑑) converges in (𝑋, 𝑑)

Concrete example: the rational numbers with the ordinary distance 
function, (ℚ, |. |) is not complete.

Example: ( 2)
1, 1.4, 1.41, 1.414, …
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Completing ℚ to get ℝ

If a metric space is not complete, we can complete it by adding in all 
the „missing“ points.

For (ℚ, |. |), we add all the possible limits of all the possible Cauchy 
sequences.

We obtain ℝ.

It can be proven that the completion of field gives a field.

Since ℚ is a field, ℝ is field.
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The p-adic Absolute Value

For each prime 𝑝, there is associated p-adic absolute value |. |𝑝 on ℚ.

Definition. Let 𝑝 be any prime number. For any nonzero integer a, let 𝑜𝑟𝑑𝑝𝑎
be the highest power of 𝑝 which divides 𝑎 , i.e.,  the greatest 𝑚 such that 
𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝𝑚). 

𝑜𝑟𝑑𝑝𝑎𝑏 = 𝑜𝑟𝑑𝑝𝑎 + 𝑜𝑟𝑑𝑝𝑏,        𝑜𝑟𝑑𝑝 𝑎/𝑏 = 𝑜𝑟𝑑𝑝𝑎 − 𝑜𝑟𝑑𝑝 𝑏,

Examples:

𝑜𝑟𝑑535 = 1, 𝑜𝑟𝑑577 = 0, 𝑜𝑟𝑑232 = 5
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The p-adic Absolute Value

Further define absolute value |. |𝑝 on ℚ as follows: (𝑎 ∈ ℚ)

|𝑎|𝑝 = ቊ
𝑝−𝑜𝑟𝑑𝑝𝑎, 𝑎 ≠ 0

0, 𝑎 = 0

Proposition. |. |𝑝 is a norm on ℚ .

Example:  |
968

9
|11 = |112.

8

9
|11 = 11−2
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Completing ℚ a different way

The p-adic absolute value give us a metric on ℚ defined by

𝑑: ℚ × ℚ → ℝ+
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝

When  𝑝 = 7 we have that 7891 and 2 are closer together than 3 and 2

|7891 − 2|7 = |7889|7 = |73 × 23|7 = 7−3 = 1/343
|3 − 2|7 = |1|7 = |70|7 = 70 = 1 > 1/343
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Completing ℚ a different way

The p-adic absolute value give us a 

metric on ℚ defined by

𝑑: ℚ × ℚ → ℝ+
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝

When  𝑝 = 7 we have that 7891 and 2 are closer together than 3 and 2

|7891 − 2|7 = |7889|7 = |73 × 23|7 = 7−3 = 1/343
|3 − 2|7 = |1|7 = |70|7 = 70 = 1 > 1/343
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Completing ℚ a different way

ℚ  is not complete with respect to  p-adic metric   𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝.

Example:

Let 𝑝 = 7. The infinite sum 
1 + 7 + 72 + 73 + 74 +75 + ⋯

is certainly not element of ℚ but sequence
1, 1 + 7, 1 + 7 + 72, 1 + 7 + 72 + 73, …

is a Cauchy sequence with respect to the  7-adic metric.

Completion of ℚ by |𝑥 − 𝑦|𝑝 gives  field ℚ𝑝: field of p-adic number.
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The p-adic Absolute Value

Definition. A norm is called non-Archimedean if
𝑥 + 𝑦 ≤ max( 𝑥 , 𝑦 )

always holds. A metric is called non-Archimedean if 
𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))

in particular, a metric is non-Archimedean if it is induced by a non-
Archimedean norm.

Thus, |. |𝑝is a non-Archimedean norm on ℚ. 

Theorem (Ostrowski). Every nontrivial norm |. | on ℚ is equivalent to 
|. |𝑝 for some prime p or the ordinary absolute value on ℚ.
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Basic property of a non-Archimedean field

• Every point in a ball is a center!

• Set of possible distances are „small“ 

{𝑝𝑛; 𝑛 ∈ ℤ}

• every triangle is isosceles
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Balls in ℚ7

81

Definition. A metric space (𝑋, 𝑑) is an ultrametric space if 
the metric 𝑑 satisfies the strong triangle inequality
𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)) .

Vizialization of ultrametrics



Protein dynamics is defined by 
means of conformational 
rearrangements of a protein 
macromolecule.

Conformational rearrangements
involve fluctuation induced 
movements of  atoms, atomic 
groups, and even large 
macromolecular fragments. 

Protein states are defined by means of 
conformations of a protein macromolecule. 

A conformation is understood as the spatial 
arrangement  of all “elementary parts” of a 
macromolecule.

Atoms, units of a polymer chain, or even 
larger molecular fragments of a  chain can be 
considered as its “elementary parts”.  
Particular representation depends on the 
question under the study. 

protein states protein dynamics

Protein is a macromolecule
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How to define protein dynamics



To study protein motions on the subtle scales, say, from 
~10-9 sec, it is necessary to use the atomic representation

of a protein molecule. 

Protein molecule consists of  ~10 3 atoms. 

Protein conformational states:
number of degrees of freedom : ~ 103

dimensionality of (Euclidian) space of states :   ~ 103

In fine-scale presentation, dimensionality of a 
space of  protein states is very high.
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Protein dynamics



Given the interatomic interactions, 

one can specify the potential energy 

of each protein conformation, and 

thereby define an energy surface 

over the space of protein 

conformational states.  Such a 

surface is called the protein energy 

landscape.

As far as the protein polymeric chain is folded 
into a condensed globular state, high 

dimensionality and ruggedness are assumed to 
be characteristic to the protein energy 

landscapes

Protein dynamics over high dimensional conformational space is 
governed by complex energy landscape.

protein energy landscape

Protein energy landscape: dimensionality:   ~ 103;
number of local minima ~10100 
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Protein dynamics



While modeling the protein motions on many 
time scales (from ~10-9 sec up to ~100 sec), we 

need the simplified description of protein 
energy landscape that keeps its multi-scale 

complexity. 

How such model can be constructed? 

Computer reconstructions of  energy 
landscapes of complex molecular 

structures suggest some ideas.
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Protein dynamics
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conformational space

Method

1. Computation of local energy 
minima and saddle points on the 
energy landscape using 
molecular dynamic simulation;

2. Specification a topography of the 
landscape by the energy 
sections;

3. Clustering the local minima into 
hierarchically nested basins of 
minima. 

4. Specification of activation 

barriers between the basins. B1 B2

B3O.M.Becker, M.Karplus, Computer reconstruction of complex energy landscapes  
J.Chem.Phys. 106, 1495  (1997)
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Protein dynamics



O.M.Becker, M.Karplus, Presentation of energy landscapes by tree-like graphs
J.Chem.Phys. 106, 1495  (1997)

The relations between the basins 

embedded one into another are 

presented by a tree-like graph. 

Such a tee is interpreted as a  

“skeleton” of  complex energy 

landscape. The nodes on the border of 

the tree ( the “leaves”) are associated 

with local energy minima (quasi-steady 

conformational states). The branching 

vertexes are associated with the energy 

barriers between the basins of local 

minima.

p
o

te
n

ti
a

l 
e

n
e

rg
y
 U

(x
)

local energy minima
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Protein dynamics



The total number of minima on the 
protein energy landscape is expected 

to be of the order of ~10100. 

This value exceeds any real scale in the 
Universe. Complete reconstruction of 
protein energy landscape is impossible 
for any computational resources. 
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Complex energy landscapes : a protein



25 years ago, Hans Frauenfelder suggested a tree-like structure of the energy 
landscape of myoglobin

Hans Frauenfelder,   in Protein Structure (N-Y.:Springer
Verlag, 1987) p.258.
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“In <…> proteins, for example, where individual

states are usually clustered in “basins”, the

interesting kinetics involves basin-to-basin

transitions. The internal distribution within a basin

is expected to approach equilibrium on a relatively

short time scale, while the slower basin-to-basin

kinetics, which involves the crossing of higher

barriers, governs the intermediate and long time

behavior of the system.”
Becker O. M., Karplus M. J. Chem. Phys.,  1997, 106, 1495

10  years later, Martin Karplus suggested the same idea

This is exactly the physical meaning of protein ultrameticity ! 
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Persistent homology

Persistent homology is an algebraic method for discerning topological features of 
data.

More persistent features are detected over a wide range of spatial scales and are 
considered more likely to represent true features of the underlying space rather 
than artifacts of sampling, noise, or particular choice of parameters.

To compute the persistent homology of a space, the space must first be 
represented as a simplicial complex. A distance function on the underlying space 
corresponds to a filtration of the simplicial complex, that is a nested sequence of 
increasing subsets.
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We start with a filtered simplicial complex:

∅ = 𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑚 = 𝐾

Step 1: Sort the simplices to get a total ordering compatible with the 
filtration.

Step 2: Obtain a boundary matrix 𝐷 with respect to the total order on 
simplices.

Step 3: Reduce the matrix using column additions, always respecting the 
total order on simplices.

Step 4: Read the persistence pairs to get the barcode.

Computing Persistent Homology
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𝑑

Idea: Connect nearby points, build a simplicial 
complex.

1. Choose 
a distance 

𝑑.

Problem: How do we choose distance 𝑑?

2. Connect 
pairs of points 

that are no 
further apart 

than 𝑑.

3. Fill in 
complete 
simplices.

4. Homology detects the hole.
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If 𝑑 is too small…

…then we detect noise.
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If 𝑑 is too large…

…then we get a giant simplex (trivial homology).
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𝑑

Problem: How do we choose distance 𝑑?

This 𝑑
looks 
good.

Idea: Consider all distances 𝑑.

How do we 
know this hole 

is significant 
and not noise?
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Consider the sequence 𝐶𝑖 of complexes associated to 
a point cloud for an sequence of distance values:

𝐶1 𝐶2 𝐶3
𝜄 𝜄
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A barcode is a visualization of an algebraic 
structure



Consider the sequence 𝐶𝑖 of complexes associated to 
a point cloud for an sequence of distance values:

𝐶1 𝐶4 𝐶7↪↪⋯ 𝐶2 ↪ 𝐶3 ↪ ↪ 𝐶5 ↪ 𝐶6 ↪ ↪ ⋯

This sequence of complexes, with maps, is a filtration.
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A barcode is a visualization of an algebraic 
structure



Filtration: 𝐶1 ↪ 𝐶2 ↪ ⋯ ↪ 𝐶𝑚

Homology with coefficients from a field 𝐹:

𝐻∗ 𝐶1 → 𝐻∗ 𝐶2 → ⋯ → 𝐻∗ 𝐶𝑚

Let 𝑀 = 𝐻∗ 𝐶1 ⊕ 𝐻∗ 𝐶2 ⊕ ⋯ ⊕ 𝐻∗ 𝐶𝑚 .

For 𝑖 ≤ 𝑗, the map 𝑓𝑖
𝑗

∶ 𝐻∗ 𝐶𝑖 → 𝐻∗ 𝐶𝑗 is induced by the 

inclusion 𝐶𝑖 ↪ 𝐶𝑗.

Let 𝐹 𝑥 act on 𝑀 by 𝑥𝑘𝛼 = 𝑓𝑖
𝑖+𝑘 𝛼 for any 𝛼 ∈ 𝐻∗ 𝐶𝑖 .

Then 𝑀 is a graded 𝐹[𝑥]-module, called a persistence module.

i.e. 𝑥 acts as a shift map 𝑥 ∶ 𝐻∗ 𝐶𝑖 → 𝐻∗ 𝐶𝑖+1
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A barcode is a visualization of an algebraic 
structure



Closed Trail Distance in a Biconnected Graph

More interconnected parts of graphs play an essential role in the social 
and natural sciences. 
The formalization of the term "more connected part" can be defined in 
many ways. 
Biconnected components of the graph do not allow good scalability, and 
their definition is complicated for weighted graphs. 
Generalization biconnected components of a graph is based on the 
limited length cycle.

Vaclav Snasel, Pavla Drazdilova, Jan Platos, Closed trail distance in a biconnected graph, Plos One, 2018.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202181
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Closed trail distance in a undirected graph
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Closed trail distance example
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Closed trail distance example
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Conclusion
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