How do ML models influence us?

by: Blanka Visy project supervisor: Ass.-Prof. Dipl.-Ing. Dr. techn. Sebastian **Tschiatschek**

"SYSTEM WANTS CORRECT PREDICTIONS

USERS WANT POSITIVE PREDICTIONS"

-Nir Rosenfeld, 2021

I WANT TO GO TO UNIVERSITY

I WAS NOT ACCEPTED :(

OTHER ACCEPTED STUDENTS HAVE A LOT OF BOOKS

I ALSO BOUGHT **BOOKS**

I WAS ACCEPTED:)

1. INTRODUCTION: Strategic classification

- Setting: Classifiers make decisions about users based on the users' attributes
- Information from the classifier can be available to the users
- Gaming = manipulation of a users' attributes to modify the classifiers' decision => shift in distribution between training and deployment

How do models influence people?

How to get accurate decisions when gaming happens?

THE GAME

Jury (Decision maker) <u>Players:</u> Contestant (users)

The game:

- 1. Jury publishes classifier $f: X \to \{-1,1\}$
- 2. **User learns** of the decision of the model and the decision rule
- 3. Users not receiving desired decision try to alter features to get desired outcome while minimizing change costs:

$$\Delta(x) = \arg\max_{y \in X} f(y) - c(x, y)$$
new utility cost of change

4. If feasible and worthwhile, user makes changes; if not, they maintain current features.

<u>Payoffs:</u> Jury: accuracy on the new, shifted distribution

Contestant: utility of prediction of the classifier – costs of feature change We consider mixed costs: $c(x,y) = q \cdot ||x - y||_2^2 + (1 - q) ||x - y||_1^2$

2. METHODOLOGY

Users: solve optimisation problem to get desired output

Jury options - what to do to avoid decreasing performance:

- Repeated Risk Minimization (RRM): continuously publish and optimize models
- Utilize algorithms to correct predictions based on transition model assumptions.

Algorithms to improve models while gaming:

One way to solve gaming: make model decisions robust to distribution shift based on assumptions to it

One strategy-robust learning algorithm by [1]:

- Input: labeled examples (can be even a black box model), description of a separable cost function
- Output: corrected labels for assumed transition model [1]: Hardt, Moritz, et al. "Strategic classification.", 2016

3. EXPERIMENTS: Student Performance Prediction:

- Binary classification dataset to predict students' final grade on a 0-20 scale (0: below 10, 1: over 10).
- The goal of the students (contestants): get 1 as a prediction by the ML model

The features in X (bold: strategic features): Costs for the users for change:

Feature(s)	Description
student info	sex, age, home adress, current health status
family info	family size, parents cohabitation status, parents education and job
studytime	weekly study time
Dalc	workday alcohol consumption
Walc	weekend alcohol consumption

4. RESULTS: Which model should be chosen?

The original models preformance on shifted datasets The original models preformance on shifted datasets T model: guadratic, cost3 T model: mixed, q=0.5, cost1 T model: mixed, q=0.5, cost3 T model: mixed, q=0.2, cost1 0.66 T model: quadratic, cost2 T model: mixed, q=0.2, cost2 T model: quadratic, cost3 T model: mixed, q=0.5, cost1 T model: mixed, q=0.2, cost3 T model: mixed, q=0.5, cost2 Tmodel: mixed, q=0.2, cost1 0.60 - Tmodel: linear, cost1 T model: linear, cost2 Gaming (max cost) Gaming (max cost)

One-time shift

- SVM: more robust in performance
- NN: similar ACC for different costs and quadratic weights
- For small amounts of gaming, SVM performs better
- For high amounts of gaming, results are mixed

- The algorithm does not improve the performance in any of the cases
- Different quadratic weights act similarly

- Study time increases for SVM, the median remains constant for NN.
- Alcohol consumption during the week increases for SVM
 - Weekend alcohol consumption decreases in both cases.

Repeated Risk Minimization

- SVM converges, NN does not converge
- Study time increases for NN, mostly increases for SVM
- Alcohol cosumption during the week decreases for both SVM and NN
- consumption Alcohol weekends rises in both cases

5. SUMMARY

For this dataset, **SVM** is more robust, converges better in RRM and has better influence on users than **NN**

Strategic classification: When a model's decision is significant, users often modify their features, creating a shift between the model's training and its actual use. This affects both the decision-makers and the users, so it's crucial to consider these impacts during model selection.

PROS: it can motivate users to truly improve GAMING CONS: incorrect decisions can increase, this is bad for both players