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1. INTRODUCTION: Strategic classification 2. METHODOLOGY

e Setting: Classifiers make decisions about users w4+ DECISION Users: solve optimisation problem to get desired output

based on the users’ attributes o Jury options - what to do to avoid decreasing performance:
e Information from the classifier can be available to % S S ) e Repeated Risk Minimization (RRM): continuously publish and

the users = < e optimize models
* Gaming=manipulation of a users’ attributes to % gt ol e Utilize algorithms to correct predictions based on transition model

modify the classifiers' decision => shift in STRATEGIC FEATURE assumptions.

distribution between training and deployment g RO i : : : :

Algorithms to improve models while gaming:
How do models influence people? One way to solve gaming: make model decisions robust to distribution shift
How to get accurate decisions when gaming happens? based on assumptions to it

THE GAME One strategy-robust learning algorithm by [1]:

. e Input: labeled examples (can be even a black box model), description
Players: Jury (Decision maker)

Contestant (users) of a separable cost function
e Qutput: corrected labels for assumed transition model

The game: | N
[1]: Hardt, Moritz, et al. "Strategic classification.", 2016

1. Jury publishes classifier [ : X — {—l,l}
2. User learns of the decision of the model and the decision rule 3. EXPERIMENTS: Student Performance Prediction:

3. Users not receiving desired decision try to alter features to get desired * Binary classification dataset to predict students’ final grade on a 0-20

outcome while minimizing change costs: scale (0: below 10, 1: over 10).
A(x) = arg maxyexf(y) —C (x, y) e The goal of the students (contestants): get 1 as a prediction by the ML

new utility cost of change model

The features in X (bold: strategic features): Costs for the users for change:

Assumed possible costs:

4. If feasible and worthwhile, user makes changes; if not, they maintain current

Feature(s) Description

fe atures. student info |sex, age, home adress, current health status Changeable features: | costl cost2 cost3
family info |family size, parents cohabitation status, parents education and job studytime +1 +2 +3
Payoffs: Jury: accuracy on the new, shifted distribution studytime |weekly study time _ T j
Sl B A T AOREIT AN Meanings: +: costly to increase 1: low cost
Contestant: utility of prediction of the classnfler costs of feature change Wale  [weekend alcohol consumption B e ————
3: high cost

We consider mixed costs: C (X, y) q - Hx yH ( )Hx — y”1

y 4

Other datasets: & syntetic @ bank loan |z|spam classification
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4. RESULTS: Which model should be chosen?
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- e SVM converges, NN does not converge
)
e SVM: more robust in performance
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e Forsmall amounts of gaming, SVM performs better

. . . e Study time increases for NN, mostl
e For high amounts of gaming, results are mixed d d

increases for SVM
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e The algortihm does not improve the performance in any of the cases

e Different quadratic weights act similarly 5. SUMMARY
. . < Winner model:
QMmoo e e L For this dataset, SVM is more robust, converges better
T T s — = e Study time increases for SVM, . . SVM
. .. in RRM and has better influence on users than NN
: : g 1 A A « the median remains constant
111 L 8 | 1 | for NN. Strategic classification: When a model's decision is significant, users often
T el T Tl T T o o aleohol consumption during modify their features, creating a shift between the model's training and its
NN e e e e the week increases for SYM actual use. This affects both the decision-makers and the users, so it’s crucial
% L A A |5 | 0101 4 A ® Weekend alcohol to consider these impacts during model selection.
il consumption decreases in

PROS: it can motivate users to truly improve
CONS: incorrect decisions can increase, this is bad for both players

T I 15 b . i ) T L i x both cases. GAM'NG




