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Introduction
In the field of neuroscience research, the accurate record-

ing and analysis of neural populations is pivotal. Session-

to-session variability presents a significant challenge in this

domain, often manifesting in recordings through several key

causes. Primarily, the continuity of data can be disrupted by

the loss of neurons initially present in the recording array. This

is compounded by the potential replacement of these neu-

rons by previously unrecorded ones, which introduces new

variables into the dataset.

Furthermore, mechanical shifts in the probe array can lead to

systematic changes in neuron positions, affecting the consis-

tency of recorded signals. Such shifts can drastically alter the

topography of neural recordings, thereby necessitating adjust-

ments in data interpretation.

The stabilization and standardization of neural recordings are

crucial for the advancement of our understanding of neural

dynamics. Through this poster, we explore methodologies

and analytical frameworks for cross-session stability analysis

and invariant feature extraction from multi-electrode array

(MEA) data. Our goal is to pave theway formore reliable long-

term studies of neural populations.

Figure 1 of Jude et al. (2022)

This project involves data from a patient who suffered a stroke

and now experiences word-finding difficulties. To aid in her

recovery:

• This patient had a Multi-Electrode Array (MEA) im-

planted, which can capture electrical impulses from

nerve cells.

• She undergoes training sessions where she is shown

images. Those images can be associated with one of

two types of words (nouns or verbs) and one of three

semantic categories (body, house, or animal)

• Data are recorded through the MEA during these ses-

sions.

Methods

Figure 2 of Jude et al. (2022)

Our investigation into the robust-
ness of neural data recordings
across multiple sessions hinges
on the utilization of computa-
tional models that aim to ex-
tract stable and invariant fea-
tures. Central to our project are
two models: the Latent Factor
Analysis via Dynamical Systems
(LFADS) Pandarinath et al. (2018)
and the SABLE Jude et al. (2022)
model.
LFADS (Latent Factor Analysis via
Dynamical Systems) is a deep
learning model that infers the
underlying dynamics from high-
dimensional and noisy datasets,
notably neural spiking data. It
utilizes a variational autoencoder
to compress observed data into
a lower-dimensional latent space
that captures essential dynam-
ical features. At its core, an
RNN models the temporal evo-
lution of these latent dynam-
ics. The encoder maps high-
dimensional input data to initial
conditions for the dynamical sys-
tem, while the decoder recon-
structs the observed data from
the latent states. LFADS sep-
arates different sources of vari-
ability in the data, distinguishing
noise frommeaningful dynamical
variations.
The SABLE model is designed for
aligning neural activity across dif-
ferent recording sessions without
requiring recalibration for behav-
ior decoding. It utilizes unsu-

pervised domain adaptation and
a sequential variational autoen-
coder framework. In its essence it
is very similar to the LFADSmodel
and extends it with a particular
domain adaption technique.
Initially, we tried to evaluate and
implement solutions building on
the LFADS base model incorpo-
rating different domain adaption
techniques. Our first approach
was similar to Hurwitz et al.
(2021). As this one did not yield
promising results, we attempted
to adapt the SABLE model to de-
rive a cross-session invariant rep-
resentation of our data.
However, while we could achieve
a good training accuracy, the
model failed to generalise.
Suprisingly, when doing a san-
ity check on the original dataset
of the model publication we also
failed to reproduce the results.
Due to the lack of promising
results from domain adaptation
technologies, we opted to ex-
plore whether the original LFADS
model could correctly align the
data in a shared space to pre-
pare it for classification. Addi-
tionally, we investigated the rea-
sons behind the models’ failures,
questioning if the probabilistic as-
sumptions of the models, includ-
ing the VAE posterios, were un-
suitable for extracting meaning-
ful information from our data and
reconstructing it.

Figure 4 of Pandarinath et al. (2018)

We utilized the PyTorch imple-
mentation of the LFADS model as
described by Sedler and Pandar-
inath (2023), which was recently
made available. The data pre-
processing followed the method-
ology outlined by Pandarinath
et al. (2018), initializing the input
matrices through Principal Com-
ponent Regression (PCR) coeffi-
cients. This approach projected
themean of the data for each ses-
sion onto the principal compo-
nents derived from session-wise
data means, organized by class.
This technique was tailor-made
for aligning data across multiple
sessions within the framework of
the LFADS model.

The training protocol integrated
all sessions into the LFADS frame-
work, enabling the model to de-
rive a generalized representation
of neural activity. The extracted
LFADS factors – condensed repre-
sentations of neural dynamics –
served as the foundation for sub-
sequent analyses.
Building on the LFADS factors, we
developed a classifier specifically
designed to identify the training
condition associated with each
neural pattern.
We then assessed the decod-
ing performance resulting from
this approach against the perfor-
mance achieved without the PCA
initialization.

Decoding performance
PCR initialised read

in matrices

Accuracy

Classifier Features Accuracy Balanced Accuracy

Random Forest

LFADS Factors 0.601537 0.685155

Mean LFADS Factors 0.452356 0.603696

Smoothed Spikes 0.728840 0.505991

Mean Smoothed Spikes 0.641693 0.462352

Logistic Regression

Mean LFADS Factors 0.505436 0.538533

Smoothed Spikes 0.510589 0.532353

LFADS Factors 0.576918 0.507457

Mean Smoothed Spikes 0.594454 0.492066

Randomly initialised

read in matrices

Accuracy

Classifier Features Accuracy Balanced Accuracy

Random Forest

LFADS Factors 0.493565 0.547623

Smoothed Spikes 0.696789 0.544118

Mean LFADS Factors 0.545098 0.464518

Mean Smoothed Spikes 0.565581 0.450099

Logistic Regression

LFADS Factors 0.456607 0.536487

Smoothed Spikes 0.510589 0.532353

Mean LFADS Factors 0.497553 0.495313

Mean Smoothed Spikes 0.594454 0.492066
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The models were trained on

all available sessions to find

a shared space, while clas-

sifiers were cross-validated

with one held-out session.

The reported performance

represents the average, with

vertical black lines in the

plots indicating the stan-

dard deviation. In the PCR-

initialized approach, the de-

coding performance reached

up to 68% accuracy for the

Wordtype. With random ini-

tialization, the performance

generally decreased com-

pared to the PCR-initialized

approach. The analysis sug-

gests that non-linear re-

lationships exist between

LFADS factors and the tar-

get. Linear classifiers failed

to achieve significant per-

formance beyond random

guessing. As baseline fea-

tures, smoothed spike data

and their trial mean were

used. The PCR initializa-

tion notably enhanced and

stabilized decoding perfor-

mance on LFADS factors com-

pared to random initializa-

tion. By comparing the two

approaches, it is evident that

PCR initialization is necessary

when utilizing LFADS factors

as features.

Reconstruction LFADS

The top rowdisplays three randomly selected trials froma ses-
sion. The heat map represents individual electrodes of the
MEA on the Y-axis and time on the X-axis (each point repre-
sents 20ms). Each cell of the heatmap indicates the frequency
at which an electrical activity threshold was exceeded on the
respective electrode within the time bin in that time interval.
The second row shows the reconstructed signals, while the
third row presents the firing rates as line charts, with each
electrode represented by one line. It is evident that the re-
constructions are significantly closer to a trial-specific average
value than the original data. Nevertheless, certain spike pat-
terns can still be recognized in the reconstructions.

SABLE Latent Space
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The left plot presents a TSNE visualization of the latent space
representation of the initial conditions of the SABLE model
applied to the training points. The black dots represent one
of the word types, while the green dots represent the other.
The model was trained using all available data except for one
held-out session. A clear separation between the word types
is observed, alongside a mixing of the sessions. The right plot
displays the latent space representation of the held-out ses-
sion. It shows a lack of separation between the word types,
indicating a form of overfitting.

Discussion
In this project, we faced significant challenges, notably with

the SABLE model, whose results we could not reproduce.

Our work with the LFADS model, however, yielded some

promising directions. The model’s performance was notably

improvedwhen incorporating all available sessions and initial-

izing with PCR coefficients that were split by conditions.

Moreover, the implementation of LFADS we used allows for

the selection of different posteriors. Our experiments sug-

gests that alternatives, such as a Gaussian posterior, might of-

fer better results in terms of data reconstruction. This insight

into posterior choice could guide future efforts in optimizing

model performance for neural data analysis.

Despite the setbacks with domain adaptation methods, in-

cluding our initial unsuccessful attempts and the challenges

with SABLE, the LFADS model presents a viable pathway for

cross-session alignment. Given these experiences, we recom-

mend further investigation into LFADS-likemethods for neural

data alignment, considering the nuanced successes and limi-

tations observed.
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