

053631 (2023W) Data Analysis Project

Exploring the Current State of the Art in Deep Multi-View-Clustering

Michael Oster & Alexander Sturm supervised by Lukas Miklautz & Sebastian Tschiatschek

Introduction and contributions

- Multi-View-Clustering (MVC) generalizes the clustering setting to multi-view data
- E.g. images of same object taken from different angles
- Recently Trosten et al. invented a new approach to MVC called AECoDDC, which uses:
 - reconstruction loss as single-view self-supervisedlearning objective (SV-SSL)
 - contrastive loss as the multi-view self-supervised-Framework by Trosten et al. learning objective (MV-SSL) • Deep Divergence-based (DDC) clustering loss for the **Contributions of our project**:

Clustering module

- developed new architectures building upon AECoDDC
- investigated how methods using contrastive alignment suffer from noise
- looked at the benefits of splitting the latent space into cluster-relevant and -irrelevant information
- conducted extensive latent space exploration

Architectures

- Introduce ACe/DeC module after training to split into cluster-relevant and -irrelevant
- Same behaviour as AECoDDC

- Include ACe/DeC module within original architecture
- New Compression loss term while training leads to different bevaviour

Results for "Noisy Fashion" MVC dataset

PCA plot of latent space		Architecture	ΔСС	
cluster relevant	cluster irrelevant	Architecture		
		AECoDDC (prior best)	0.8 (0.02)	0.77 (0.01)
		AECoCoDDC	0.86 (0.02)	0.81 (0.01)

References:

- Daniel J. Trosten et al.: "On the Effects of Self-supervision and Contrastive Alignment in Deep Multi-view Clustering"
- Lukas Miklautz et al.: "Details (Don't) Matter: Isolating Cluster Information in Deep Embedded Spaces"

- Conclusion:
 - Contrastive learning benefits from label information truth ground embedded in the views
- AECoDDC+ACe/DeC is able to split into cluster-relevant and -irrelevant
- The model finds human interpretable centroids
- Performance improvement on "Noisy Fashion" does not generalize to more complex datasets