COUNTING TRIANGLES IN GRAPHS Edina Marica Supervisor: Ass.-Prof. Dr.techn. Gramoz Goranci

INTRODUCTION

Triangles are:

- the simplest forms of **cliques** in graphs
- crucial for **community detection**
- essential for pattern recognition
- key for social network analysis

ALGEBRAIC ALGORITHMS

Trace of the adjacency matrix The number of triangles in an undirected graph is equal to $\frac{1}{6}$ tr(A³). Time complexity to calculate A³: O(n³).

but they are **computationally expensive**.

GOAL

Compare different methods, combinatorial and algebraic, exact and approximation algorithms to analyze their performance and runtime.

DATASETS

Brain networks

Social media networks

Collaboration networks

II PC1

Co-purchase networks

OBSERVATION: time complexity of a matrix-vector multiplication is $O(n^2)$, so we can calculate $A^3x = A(A(Ax))$ with $3n^2$ operations -> matrix-free method.

Approximating the trace

Algorithm 4 - Hutch

$$\begin{split} H(A) &= \frac{1}{m} \sum_{i=1}^{m} g_i^T A g_i \rightarrow m \text{ matrix-vector multiplications} \\ \bullet \text{ if } m &= O(\frac{1}{\epsilon^2}) \text{ then } H(A) \text{ is an } \boldsymbol{\epsilon}\text{-approximation for } \\ tr(A). \end{split}$$

Algorithm 5 - Hutch ++

More sophisticated version of Hutch that requires only $m = O(\frac{1}{\epsilon})$ matrix-vector multiplications.

Algorithm 6 - Eigen Triangle

The trace can also be expressed with the eigenvalues of the adjaceney matrix $tr(\Lambda) = \frac{1}{2} \frac{\pi}{2} \lambda^3$

COMBINATORIAL ALGORITHMS

Algorithm 1 - naive method

Take all node triplets, check if they are connected Time complexity: $O(n^3)$

Algorithm 2 - edge iterator

Take two connected nodes, find common neighbor Time complexity: O(nm), smart way: O(m^{1.5})

Algorithm 3 - node iterator

Take a node, find neighbor pairs that are connected Time complexity: O(nm), smart way: O(m^{1.5}) of the adjacency matrix tr(A) = ¹/₆ Σ_{i=1}ⁿλ_i³
tr(A) can be well approximated with the first eg. 30 eigenvalues.

EXPERIMENTAL RESULTS

Dataset	Triangle	Fast	Fast	Hutch++	
	count	Node	Edge		
			17220	time	relative
					error
Brain	622,414	0.05	0.06	0.004	0.0002
Wiki	343,066	0.05	0.05	0.009	0.002
Relativity	48,260	0.02	0.02	0.009	0.017
Astrophysics	$1,\!351,\!441$	0.48	0.42	0.06	0.069
Email	727,044	0.41	0.41	0.08	0.029
Amazon	667,129	1.94	2.53	1.49	0.094
Twitch	54,148,895	101.3	36.7	3.90	0.043

EXTENSION TO 4-CYCLES

EXPERIMENTAL RESULTS

Combinatorial algorithms									
Dataset	Vertices	Edges	Node	Fast	Edge	Fast			
			it.	Node	it.	Edge			
				it.		it.			
Brain	213	16,089	0.28	0.05	0.27	0.06			
Wiki	2,277	31,371	0.38	0.05	0.42	0.05			
Relativity	5,242	14,484	0.04	0.02	0.04	0.02			
Astrophysics	18,772	$198,\!050$	1.90	0.48	2.31	0.42			
Email	36,692	183,831	2.94	0.41	3.13	0.41			
Amazon	334,863	925,872	3.67	1.94	3.10	2.53			
Twitch	168,114	6,797,557	-	101.34	ш	36.70			

REFERENCES

- T. Schank, D. Wagner: Finding, Counting and Listing all Triangles in Large Graphs, An Experimental Study
- Chiba, Nishizeki: Arboricity and Subgraph Listing Algorithms
- M.F.Hutchinson: A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines
- R. A. Meyer et al.: Hutch++: Optimal Stochastic Trace Estimation
- C. E. Tsourakakis: Fast Counting of Triangles in Large Real Networks: Algorithms and Laws