COUNTING TRIANGLES IN GRAPHS

Edina Marica

Supervisor: Ass.-Prof. Dr.techn. Gramoz Goranci

INTRODUCTION

Triangles are:

- the simplest forms of cliques in graphs
- crucial for community detection
- essential for pattern recognition

- key for social network analysis
but they are computationally expensive.

GOAL

Compare different methods, combinatorial and algebraic, exact and approximation algorithms to analyze their performance and runtime.

DATASETS

COMBINATORIALALGORITHMS

Algorithm 1 - naive method
Take all node triplets, check if they are connected

Time complexity: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
Algorithm 2 - edge iterator
Take two connected nodes, find common neighbor Time complexity: $\mathrm{O}(\mathrm{nm})$, smart way: $\mathrm{O}\left(\mathrm{m}^{1.5}\right)$

Algorithm 3-node iterator
Take a node, find neighbor pairs that are connected Time complexity: $\mathrm{O}(\mathrm{nm})$, smart way: $\mathrm{O}\left(\mathrm{m}^{1.5}\right)$

EXPERIMENTAL RESULTS

Combinatorial algorithms						
Dataset	Vertices	Edges	Node it.	Fast Node it.	Edge it.	Fast Edge it.
Brain	213	16,089	0.28	0.05	0.27	0.06
Wiki	2,277	31,371	0.38	0.05	0.42	0.05
Relativity	5,242	14,484	0.04	0.02	0.04	0.02
Astrophysics	18,772	198,050	1.90	0.48	2.31	0.42
Email	36,692	183,831	2.94	0.41	3.13	0.41
Amazon	334,863	925,872	3.67	1.94	3.10	2.53
Twitch	168,114	$6,797,557$	-	101.34	-	36.70

ALGEBRAIC ALGORITHMS

Trace of the adjacency matrix
The number of triangles in an undirected graph is equal to $\frac{1}{6} \operatorname{tr}\left(\mathrm{~A}^{3}\right)$.
Time complexity to calculate A^{3} : $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
OBSERVATION: time complexity of a matrix-vector multiplication is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, so we can calculate $A^{3} x=A(A(A x))$ with $3 n^{2}$ operations $->$ matrix-free method.

Approximating the trace

Algorithm 4 - Hutch
$H(A)=\frac{1}{m} \sum_{i=1}^{m} \mathrm{~g}_{\mathrm{i}}^{\mathrm{T}} \mathrm{Ag}_{\mathrm{i}}$->m matrix-vector multiplications

- if $\mathrm{m}=\mathrm{O}\left(\frac{1}{\varepsilon^{2}}\right)$ then $\mathrm{H}(\mathrm{A})$ is an $\boldsymbol{\varepsilon}$-approximation for $\operatorname{tr}(\mathrm{A})$.

Algorithm 5 - Hutch ++

More sophisticated version of Hutch that requires only $\mathrm{m}=\mathrm{O}\left(\frac{1}{\varepsilon}\right)$ matrix-vector multiplications.

Algorithm 6 - Eigen Triangle

The trace can also be expressed with the eigenvalues of the adjacency matrix $\operatorname{tr}(A)=\frac{1}{6} \sum_{i=1}^{n} \lambda_{i}^{3}$

- $\operatorname{tr}(\mathrm{A})$ can be well approximated with the first eg. 30 eigenvalues.

EXPERIMENTAL RESULTS

Dataset	Triangle count	Fast Node	Fast Edge	Hutch++ time relative error	
Brain	622,414	0.05	0.06	0.004	0.0002
Wiki	343,066	0.05	0.05	0.009	0.002
Relativity	48,260	0.02	0.02	0.009	0.017
Astrophysics	$1,351,441$	0.48	0.42	0.06	0.069
Email	727,044	0.41	0.41	0.08	0.029
Amazon	667,129	1.94	2.53	1.49	0.094
Twitch	$54,148,895$	101.3	36.7	3.90	0.043

EXTENSION TO 4-CYCLES

REFERENCES

- T. Schank, D. Wagner: Finding, Counting and Listing all Triangles in Large Graphs, An Experimental Study
- Chiba, Nishizeki: Arboricity and Subgraph Listing Algorithms
- M.F.Hutchinson: A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines
- R. A. Meyer et al.: Hutch++: Optimal Stochastic Trace Estimation
- C. E. Tsourakakis: Fast Counting of Triangles in Large Real Networks: Algorithms and Laws

